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Ultrasonic nondestructive evaluation of fibre-reinforced
composite materials - a review

VIKRAM K KINRA and VINAY DAYAL

Department of Aerospace Engineering and Mechanics and Materials
Center, Texas A&M University, College Station, Texas 77843, USA

Abstract. This paper reviews var,)us ultrasonic nondestructive evalu-
ation techniques applicable to fibre-reinforced composites. The techniques
are briefly described and key references are cited. Methods to evaluate the
reduced stiffness of composites due to micro-damage are described. Results
show that for composites through-the-thickness attenuation increases and
stiffness does not change due to transverse cracks, but in-plane stiffness and
attenuation changes are substantial and can be measured by the Lamb
wave techniques.

Keywords. Ultrasonics; nondestructive evaluation; composites; thin
laminates.

1. Introduction

The excellent strength-to-weight ratio and the flexibility in tailoring the strength and
stiffness of fibre-reinforced materials have made composites an indispensable structural
material. Mixing of brittle but high strength fibres (e.g. graphite fibre, a. = 2"5 GN/m2 )
with viscoelastic and low strength (e.g. epoxy a. = 0-10 GN/m2 ) matrices, however, has
created some very complex damage mechanism problems. Damage initiation and
propagation are very different in composites from those in metals. The effect of
mechanical, thermal or humidity loading is very complex in composites. Nondestruc-
tive evaluation (NDE) of in-service components is important because the damage
initiation and growth mechanisms are not fully understood.

Various NDE techniques such as X-ray radiography, dye-penetrant tests, ultrasonics,
thermography, acoustic emission, holography etc. have been successfully used to
characterize damage in composites. This review is restricted to ultrasonic NtE of
composites. It will also cover the technique of acoustic emission as well as the more
recently developed method of acousto-ultrasonics.

In metals when damage is initiated, it becomes the nucleating site for further damage
growth. On the other hand, Reifsnider eta) (1983, pp. 399-420) have shown that in
fibre-reinforced composites, a very different phenomenon takes place. Invariably, the
first node of damage in compc:ites is matrix cracking. The fibres, being much stronger
than the matrix, are able to carry the extra load due to the redistribution of stresses in
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the vicinity of the matrix cracks. Fibres also act as matrix crack arresters. Stresses in the
vicinity of the first crack are relieved and the next crack forms where the stresses again
develop to a critical value. As a result the entire structure develops microcracks without
endangering the integrity of the structure. Up to this stage of damage, identification of
individual cracks does not serve any useful purpose. But due to these cracks the stiffness
ofthe structure is reduced and hence the interest lies in the determination of the residual
stiffness and the attenuation of the material. The transverse cracks in the 90°-plies are
arrested by the 0"-plies. The point of crack arrest also becomes a point of stress
concentration and, therefore, a nucleating site for the delaminations. At this stage of
damige deve!opment micrczracks ! .ic lost their significance and the attention is
turned to the detection of macro-damage. The damage size and location are also of
interest during manufacturing since any foreign material, such as dust, grease or oil left
on the surface of the lamina during fabrication can result in debonding. Thus all NDE
techniques can broadly be categorized as (1) techniques for detection, sizing and .
location of damage, and (2) evaluation of mechanical properties such as stiffness and
ultrasonic attenuation.

2. Detection of damage, size and location

According to Krautkramer & Krautkramer (1983), Sokolov (1929) used a through-the-
thickness transmission technique for flaw detection in metals. In regions where cracks
exist, the sound intensity is small compared to the undamaged regions. Firestone (1945)
utilized the pulse-echo method for the detection of flaws in materials. The ultrasonic
pulses reflected from the flaws are detected to map out the flaws. The time taken for the
waves to travel from the transmitting transducer to the receiving transducer gives the
depth of the flaw if the wave peed in the material is accurately known. Today, using

sc hemat ic.....
: .. ~~signor...a-l.-:.

____________

transducer
Figure 1. Schematic of the C-scan

crack principle. The signal reflected from
the crack is seen as a smaller signal

specimen between the reflections from the
front and back surfaces.
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Figure 3. Digital C-scan of a 32-ply graphite/epoxy laminate with central and circumferential
damage as well as thickness variation across the specimen (R A Blake. private commun.)
(magnification = 0-8 x; scan line spacing - 0-082 in.; scan time = 61 s).

computers with multicolored plotting facilities, a very detailed picture of the damage ....

can be obtained. This pulse-echo technique is now better known as the "C-scan.
technique. The basic concept behind this technique is shown in figure 1. The same
transducer is used for production and reception of the waves. A typical signal trace is
also shown. The first pulse is the front surface reflection, the second is reflection from
the crack, and the third pulse is from the back surface. The presence of central pulse
indicates a flaw in the material. The depth h of the crack can be obtained by an accurate
measurement of time t and prior knowledge of the wavespeed c in the material: h = ct/2.
Bar-Cohen et al (1979) have used this technique to detect I mm diameter delaminations
in graphite/epoxy laminates with an accuracy of ±M-02 mm in depth measurements'.
Daniel et al (1981) have used the C-scan for monitoring fatigue damage in composites- a
typical C-scan picture from his work is reproduced in figure 2. Blake (1982, 1983) and
Blake & Hartman (1984) have used computers for digital analysis and presentation of
the damage pictures; see figure 3 for a digital C-scan picture.
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Acoustic emission (AE) is another technique which is used for the detection of the
onset of damage, its size and location. The deformation of a structure takes place under
loading. This deformation eventually results in the generation of cracks or discontinu-
ities in the structure. During the initiation and development of these cracks energy is
released as sound waves. Thus the instant of initiation of damage can be recorded by
detecting the AE waves. By a simple triangulation technique the location of damage can
also be estimated fairly accurately. This is an excellent on-board technique, and
although not a nondestructive technique, it is able to pinpoint the onset of failure.

Liptai (1972) found that in composites the acoustic emission takes place in two
categories, the low level emission generated by plastic deformation of matrix and fibres,
and the higher level emission generated by fibre failure, matrix cracking, interface
failure and fibre pullout. Acoustic emission techniques have been used to study the real-
time behavior of composite materials during fatigue loading by William & Reifsnider
(1977). They have shown that AE data can be combined with video-thermography and
dynamic recording of compliance to get meaningful results for the real-time NDE. Becht
etat (1976) and Baily etal (1980) have used AE to investigate flaw formation and
propagation in graphite rcinforced plastic (GRP) pressure tubes, and to evaluate the
fracture behavior of notched-bend specimens in flexural and fatigue experiments. They
have reported some success in identifying fibre failure from matrix failure by amplitude
distribution analysis. Arora & Tangri (1981) have used AE count rate (number of times
the amplitude crosses the threshold) to estimate the growth rate of cracks in Zr-2.5%
Nb. William & Egan (1979) and Belchamber et al (1983) have used spectral analysis of
the AE signal to analyse fibre composite failure mechanisms. Since various types of
damage may occur at the same time, it is rather difficult to differentiate between them.
in this work, groups of AE events are treated as random data and are statistically
analysed to identify group characteristics of different failure modes.

Vary & Bowles (1977, pp. 242-258) and Vary (1982) have combined AE with
ultrasonics and developed the acousto-ultrasonic technique for characterization of
fibre reinforced composites. The acoustic emission is stimulated by passing ultrasonic
waves in structures. These AE waves arc then detected by the usual AE procedures. These
complex waves have been quantified by the "stress wave factor" (swF) technique which
will be described next. Talreja et al (1984, pp. 1099-1106) have used the technique
developed by Vary to assess stiffness degradation in graphite/epoxy laminates.

The stress wave factor technique was proposed by Vary & Bowles (1977, pp. 242-
258). The SWF is defined as; swF = g*r*n, where g is the time interval over which the
signal is recorded, r is the repetition rate of simulated AE waves and n is the number of
oscillations each AE burst exceeds a fixed threshold voltage. Vary & Lark (1979) have
shown that swF can be correlated with the variations of the tensile and shear strengths
of composite materials. William & Lampert (1980) have used a modified swF for the
degradation studies of impact damage in graphite-fibre composites. swr is considered
to be a measure of goodness of the material; a high swF indicates a less damaged
%pecimen. Obviously, swF is inversely proportional to the atteruation in the material.

3. Acoustic parameters (wavespeed and attenuation) for the NDE of composites

It is well-known that the wavespeed of sound in a material is related to its stiffness:
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c2 = Eip where c is the speed of sound, E is an approximate stiffness and p is the density.
The presence of defects (e.g. voids, cracks, particles etc.) changes the effective stiffness of
the material. When a mechanical wave of wavelength large in comparison to the crack
size is propagated through such a medium, the change in stiffness is manifested as a
change in the sound velocity according to the above equation. Furthermore, the defects
act as wave scatterers. As a result, the defect population also manifests itself in the
attenuation of the wave passed through the material. Kinra et al (1980, 1982), Kinra &
Anand (1982), Kinra & Ker (1982, 1983) and Kinra (1984, pp. 983-991) have measured
c and x (attenuation coefficient) for a variety of particulate composites. As expected
both c and 2 were found to depend strongly on the volume fraction of inclusions. An
unexpected result was that near a critical frequency, c and O, were also found to be highly . ... . .
sensitive functions of frequency. This was attributed to the excitation of the
fundamental resonance of the particles or voids.

The anisotropy of composites can greatly complicate the interpretation of the
received ultrasonic signals. Kriz & Ledbetter (1983) and Kinra & Eden (1984) have
obtained the solution of the Christoffel's equations given by Musgrave (1970) to
graphically depict stiffness, longitudinal wave velocity and shear velocity variations in
graphite/epoxy laminates. Some results obtained by Kinra & Eden (1984) are shown in
figure 4. Here, slowness is the inverse of velocity. Shown also on the plot are the group
velocity vectors (energy propagation directions) which are always perpendicular to the
slowness surface.

Various researchers have used ultrasonics for the NDE of composites by relating the
damage to the acoustic parameters. Ultrasonic waves have been used to measure the .---
stiffness parameters in composites by Tauchert & Guzelsu (1971, 1972) Kriz &
Stinchcomb (1979), Mann etal (1980), William etal (1980a) and Ueda etal (1983).
Reynold & Wilkinson (1979) have used the measurement of difference in wave
velocities for the estimation of porosity in composite materials. Heyman and Cantrell
(1979, pp. 45-56) used a phase-insensitive transducer to study the effect of material
inhomogeneity on ultrasonic measurements. Ultrasonic attenuation has been used to
characterize damage in fibre composites by Hayford & Henneke (1979, pp. 184-200),
Lee & Williams (1980), William etal (1980b, 1982), William & Doll (1980), Ulman &

*. a... ., ' "

;( as/mm -) .........

0.50-
0 \6O

\sv SH
0.25 aS

Figure 4. Slowness surfaces for a
unidirectional graphite/epoxy com-
posite. L: quasi-longitudinal, SV:

0 quasi-shear (vertical), and SH:0.25 0.50 p s/mm quasi-shear (horizontal) surfaces. F
X3 is the energy propagation direction.
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Henneke (1982, pp. 323-342) and Hale & Ashton (1985). Ringermacher (1980, pp. 957-
960) has utilized the changes in wavespeed to characterize damage in composites. He
has shown that wavespeed is not a useful parameter to characterize damage in fibre
composites. Cantrell et al (1980, pp. 1003-1005) have measured both attenuation and
wavespeed and reached the same conclusion that while attenuation is a very sensitive
measure of damage, wavespeed or stiffness is not. Eden (1985) has tested transverse
cracks generated in [06904011 graphite/epoxy specimens under static loading. He
has used the pulse-echo spectroscopic technique to measure both wavespeed and
attenuation. He has shown that as the damage increases, the pulses become broad
(dispersive effect) and it becomes increasingly difficult to make good measurements of
the acoustic parameters. He has also shown that when the waves propagate normal to
the plane of the plate then the interaction between the cracks and waves is small. Hence
wavespeed does not change but the increase in attenuation is appreciable.

4. Research of the present authors

We now summarize the principal research carried out by us. A detailed literature
survey revealed that there was no method available to measure the acoustic parameters
for thin specimens. We expect that aerospace structures will be thin and so Dayal et al
(1986, pp. 899-904) have developed ultrasonic techniques for the measurement of
acoustic parameters in thin specimens. When the specimen is thin the wave reflections
from the two surfaces interfere and the classical time-of-flight method breaks down. In
our technique the data is transformed from the time domain to the frequency domain
by the use of fast fourier transforms (mr). The techniques are fully computer-controlled . .
adnd hence ca,, c very easily aJapted for automation and remut,; control. These
techniques have been applied to the monitoring of damage in fibre-reinforced
composites by Dayal & Kinra (1986). We found that attenuation is a very sensitive
parameter of damage while wavespeed is rather insensitive. Results also show that the
technique is very accurate and highly reproducible.

4.1 Through-the-thickness measurement of acoustic parameters - .... "

Let an infinite elastic plate be immersed in an elastic fluid (water). The time-versus- ....

distance diagram of various reflected and transmitted pulses is shown in figure 5. If the .... -.--
plate is thick enough then 2 and 6 or 4 and 6 can be separated in the time domain. The
available techniques (toneburst, pulse-superposition, pulse-echo etc.) are adequate to
calculate the wavespeed and attenuation (though not very accurate for attenuation). If
the plate is thin then 2, 6, 10 etc. or 4, 8, 12 etc. interfere and acoustic parameters cannot
be calculated using any of the currently available techniques. The technique developed
by us removes these restrictions and we have been successful in measuring wavespeed
for aluminium plates down to 0-258 mm (10mil) thickness. The equations used to
reduce the data for these measurements are as follows. The first case we consider is
when the plate thickness is such that a single pulse of signal is used and the various'
reflected or transmitted pulses can be separated in the time domain. Then,

(G*F* - 1) - Tpus 2 exp (- i2kh), o 2n
where GO* is the mr' of pulses 2 + 6 and F* is the Mr' of pulse 2; T12 is the transmission
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water specimen water
20

tK

Figure 5. Time-versus-distance diagrarr for a plate immersed crn a fluid.

coefficient for wave from water to plate and T 2 is the transmission coefficient from

plate to water; k = k + ik2  is the complex wavenumber, k = w/c, is the circular - - ......

frequency and c is the wavespeed, k2 is the attenuation coefficient: and h is the plate

thickness. Then.

c = 4ih (- 4 if) and k: = n M~/h, 
(2)

where 
1 is the phase of (G*F* - 1) and M = I(G*/F*)/T 2 T2 1.

The wavespeed is calculated by plotting the phase-versus-frequency plot and the" "

slope is obtained by fitting a least squares straight line through the points. Attenuation

is obtained from the ratio of the magnitudes.

If the transmitted signal is used then the equations are,

GF*= R~ exp (- i2kh) 
(3)

w here G * is the rv of p ulse 8 a ci F * is the r eTr o f pu lse 4...; 
. .- -

The wavespeed and attenuation are calculated from (2) with M = f(G*/F*)/Rt 2 . .. .

- Now the case where the pulses cannot be separated is considered. If the reflected field ,: - .. - -

-- is recorded by the transducer then the governing equation is .... -...

where f = R 2 R 1(G*/F* - 1)/T1T21 and R 2 (R2 ) is the reflection coefficient of a

wave in water (plate) from plate (water). G* is the r' of pulses 2 + 6 + 10 + ... oo and

F* is the rr of a reference signal obtained by replacing the specimen by a thick plate of

the same material and surface conditions.

If the transmitted signal is recorded by the transducer,

G*/F = Tt1 T2 exp { - h(k - k)}/{lI - R 2 exp(- i2kh)} .(5)

where ko is the wavenumber of the wave in water, G* is the wrr of pulses 4 + 8 + 12

+ ... and F* is the vv-r of signal when there is no specimen between the transducers.

Note that this is a quadratic equation in exp (- ikh).

These equations are equally valid for longitudinal and shear waves and have been

usd to measure both types of waves. They have been applied to a variety of specimens

SaI J6 
-
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lead/epoxy
<ci>/c Z:S/%/

0.9
Hashin bound

0.8 Figure 6. Normalized phase velo-
city as a function of frequency in a
lead/epoxy particulate composite.

0.- c V CNote large variations in velocity
around the cut-off frequency fl,.

0.2 0.3 d4 0M..1- Circles are digitized data points.

and the results are shown in table 1. The thickness of a plate of aluminium was reduced
by careful machining and the wavespeed calculated at various thickness. The results
show excellent repeatability and accuracy. It may be mentioned here that although the
derivation assumed that the plate is elastic it is not difficult to show that these equations
are rigorously valid for linear viscoelastic and dispersive materials provided attenu-
ation is small, i.e., k2 << k, which is generally the case. As an illustration of the efficacy of
our technique in measuring k, and k2 of highly dispersive and attenuative media, we
tested random particulate composites consisting of lead spheres in an epoxy matrix.
Figure 6 shows the phase velocity as a function of frequency in this specimen. Below the
cut-off frequency, where the wavelength is large in comparison to the ball radius, the
wavespeed is weakly dependent on frequency. Again at high frequencies, where the
wavelength is small in comparison to the ball radius, the wavespeed is sensibly . --

independent of the frequency. Around the cut-off frequency the wavespeed fluctuates
very rapidly with increase in frequency. Here, cut-off frequency is the frequency that
corresponds to the excitation of the rigid-body-translation resonance of the spheres. It
is emphasized that the entire dispersion curve was obtained in a single experiment.

Next the results are presented for the NDE of fibre reinforced, graphite/epoxy,
AS4/3502 composites. A [069002J, laminate was tested. A static load was applied to :" -" -2
the specimen and transverse cracks were produced in the 90°-plies. The test was................
interrupted at regular intervals and the number of cracks was determined by the edge
replication technique. The specimen was then subjected to ultrasonic investigation.
Figure 7 shows the results for tests at three different frequencies for attenuation as a
function of applied loads. Shown also are the line sketches of the edge replications at
different damage stages. A dramatic increase in attenuation is observed at all the
frequencies. Figure 8 shows that for the same test there is practically no change in
wavespeed. These results show that for the through-the-thickness measurements
attenuation is a very good damage metric while ,avespeed is not.

All the above measurements of wavespeed and attenuation have been made in the
through-the-thickness direction where the crack-wave interaction is the weakest. This
interaction is strongest when a wave travels perpendicular to the crack faces. This
provided the motivation for examining the propagation of Lamb waves, which are
described next.

4.2 Lamb wave technique for the NDE of composites

When Lamb waves are propagated in plates immersed in water, the displacement of the
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20 40 60 s0 100 ksi

applied stress

4 Figure 7. Attenuation increases
dramatically with transverse cracks
in a (0690,0.] laminate at all three
frequencies tested. The extent of .
damage and number of cracks are

1 3 S 6 7 5 shown in the edge replication,-

number of crocks sketches.

two surfaces of the plate generates waves in water, hence the terminology "leaky Lamb
waves". Since these waves travel in the plane of the plate, in-plane stiffness governs the
wavespeed of Lamb waves. Leaky Lamb waves were used by Bar-Cohen & Chimenti
(1985) for the NDE of damage in composites. They have shown that various forms of
damage can be identified by a null-zone measurement method. When a wave is incident
upon a plate, it results in the excitation ofa Lamb wave in the plate as well as a specular
reflection. Due to phase change in the leaky wave, the specular reflection and the leaky
wave interfere and a well-defined null zone is observed. The movement of the null zone . .
has been related to the defects in their work. In our work we have adopted a different
approach. The transducers are placed such that specular reflection is avoided and only

mm/p sec
3.3

'II

- 2.9-
a * 2.2S MHz

a S. 00 MHZ
o * 7.10 MHz

error *0.2 86 Figre & Longitudinal wavespeed

0 0 6 60 60 0 kSl remains unchanged with damage.
opplied stress Laminate is the same as in Figure 7.
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the leaky Lamb waves are sensed. We measured the wavespeed and attenuation of the
leaky Lamb waves.

The angle at which a Lamb wave is generated in the plate is governed by Snell's Law,

sin (0i)/sin (0,) = cW/cL, (8)

where Oi is the angle of incidence, 0, = nr/2 is the angle of refraction, c. is the wavespeed
in water and CL is the Lamb wavespeed. Habegar et al (1979) have shown by a rigorous
analysis that at low frequencies (wavelength >> plate thickness) the Lamb wavespeed
can be related to the in-plane stiffness (E,) as

C-2 = E /{p(l - V12 V2 1)} (9)

where v1 2 and v21 are the two Poisson's ratios for the composite plate. Since for the
cross-ply composites that we have tested, v1 2 v 2 1 << 1, (8) reduces to

cL=El/p. (10)

1.0 A

E
1 0.8 specimen

0I I I0 12 16 20 mm ..

cumulative crack length
Nepers/cm seie

3- 0 o 90,s KCu0-..5

C

XI -

0 - S12 1 mm
cumlative crack length

FkIu 9. (a) Reduction of in-plane stilfnas. and () increase in attenuation or leaky Lamb
waves with damage, in three graphite/epoxy laminateL.
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Thus by the measurement of the Lamb wavespeed from (7) and substituting it in (9) the
in-plane stiffness E, can be calculated. The results for a variety of graphite/epoxy
laminates (Dayal & Kinra 1987) are reproduced here. Figure 9 shows the reduction in
stiffness for three different laminate layups: [0 90,],; [0 903],; and [029020], Let 2a be
the length of the crack which is the same as the thickness of the contiguous 90'-plies. Let
N be the linear density of the transverse cracks in the direction of wave propagation. In
the absence of a more suitable measure of damage, we define cumulative crack length L

2aN and use it as a damage metric. Note that four 90'-plies contribute more to the
overall stiffness of the laminate in comparison to three 90°-plies and hence their failure
results in a larger stiffness reduction. The third laminate [0290201, has four 90°-plies
but they are divided in two and also the laminate has four 0°-plies. Thus the stiffness
contribution of the 90 0-plies is very low and hence it shows much lower stiffness r7

reduction on damage. The increase in attenuation for the three laminates is shown in
figure 9b. All tests were conducted at the same frequency of 0.5 MHz. The scattering
cross-section of [0 90,]s laminate is the largest (k, a = 0.45) and hence the attenuation
increase is maximum. When k1a << 1, as for the [02 907 0], laminate (k1a = 0-06), the
wavelength is very large as compared to the crack length and the wave does not "see"
the crack and the increase in attenuation is very low.

The results obtained by the authors thus show that for the through-the-thickness '"-

measurements the change in attenuation is a good measure of matrix cracking while
wavespeed is not. But in the in-plane measurements both wavespeed and attenuation
are sensitive measures of matrix cracks.
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LIST OF SYMBOLS

F*(.) fourier transform of f(t)

G*(,) fourier transform of g(t)

M magnitude of a complex number

N number of digitizing points

R Ij Reflection coefficient in medium I from medium j

T sampling interval in time domain, ns

TO  signal length, usec

TIj Transmission coefficient for a wave incident in medium i and

transmitted into medium j

a a characteristic length; half crack length or particle radius, mm

c. c1  longitudinal phase velocity in specimen, mm/psec

co  longitudinal phase velocity of wave in immersion medium (water),

mm/uisec

cg group velocity in specimen, mm/psec

f frequency, MHz

fc cut-off frequency, MHz

Af frequency resolution, MHz

h plate thickness, mm

i = -1

k complex wavenumber = ki + ik 2 , mm- 1

ko  wavenumber in water, real, mm-1

kI  = W/c, wavenumber in specimen, mm-1

k2 attenuation coefficient, nepers/mm

m integer; number of complete round trips taken by the wave across

the plate thickness

t time, usec

u particle displacement

x distance I r,! For r

a normalized frequency, 2Nfa/c
X wavelength, m .

C normalized wavenumber, 2dfa/<c>: "
0 density of specimen, g/ml

0o density of water, g/ml _. -t/

# phase of a complex number .'

a circular frequency, rad/usec Oct
> •aggregate property of composite
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1. INTRODUCTION

The classical method of measuring the speed of sound in non-dispersive

media is the time-of-flight method, see Reference1  for example. We note that

in non-dispersive media the phase velocity and the group velocity are

identical2 . When the material is either dispersive or attenuative this method

breaks down and a suitable method then is the so-called toneburst method.

Here, a burst of pure tone, typically about ten cycles in duration is used;

this places a constraint on the specimen thickness; it must be thick enough so

that the toneburst reflections from the two faces of the specimen can be

clearly separated in time-domain i.e. it should be roughly five-wavelength

thick. For example, in steel at, say, one MHz frequency the required minimum

thickness would be about 30 mm. There are many situations of practical

importance where one must carry out an ultrasonic examination of considerebly

thinner specimens. For example, aircraft and aerospace structures using

graphite/epoxy or metal-matrix composites employ panels as thin as one mm.

Chang, et.al3 have developed a technique for the measurement of phase velocity

in thin laminates. They carry out an FFT of the front-surface and the back-

surface reflections of a signal. The amplitude-vs-frequency curve is

characterized by a series of resonance peaks; the peak spacing yields the

phase velocity which is the same as the group velocity, for it is assumed that

the material is non-dispersive. This method requires human analysis of data

(it cannot be computer automated). Further, one cannot measure attenuation by

this method. More recently Heyman4 has developed a technique called phase

insensitive toneburst spectroscopy. Although this technique yields excellent

results, it requires the use of rather specialized and sophisticated

transducers called acousto-electric transducers (AET) which are not yet

commercially available.
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By combining standard FFT methods with conventional ultrasonics (using

commercially availdble broad band piezoelectric transducers) we have been able

to develop a method by which one can measure the phase velocity, the group

velocity and the attenuation in ultra-thin specimens (sub-millimeter or sub-

wavelength in thickness). There are many situations in which one cannot

obtain a series of resonance peaks required by the method of Chang, et.al3.

Our method works even in the absence of a single resonance peak. A detailed

description of this technique is the central objective of this paper. We will

illustrate the use of this technique on four rather disparate materials:

aluminum, an epoxy, a particulate composite and graphite-fiber/epoxy

composite. It will be demonstrated that this technique works equally well for

thin or thick specimens, and for dispersive as well as non-dispersive media.

2. THEORY

Consider an infinite elastic plate immersed in an elastic fluid

(water). A Lagrangian diagram indicating the space-time location of a

wavefront which occupied the position x=O at time t=O is shown in Fig. 1. A

plane-fronted finite-duration pulse, ray 1, is normally incident on the

plate. This results in an infinite series of reflected and transmitted

pulses. The expressions for the reflection and transmission coefficients of a

displacement wave for perfectly elastic media may be found in Achenbach's

5book

Let the displacement in the incident field be given by

uinc . fo(wt - koX)
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where f (s) = 0 for s<O. (1)

For the time being w and ko can be any two constants connected by co
W W/ko, where co is the phase velocity of wave in water. Later w and ko will

be identified with the circular frequency and wavenumber of a monochromatic

harmonic wave. The displacement field along the various reflected rays may be

written as

u2 = R12f0(S-S2); s2 = 2koa

u6 = T12R21T21f0(s-s6); s6 = 2koa + 2kh (2)

u10 = T 2R T21 fo(S-S 10 ); s10 = 2koa + 4kh

etc.

Here, s = wt + kox, h = b-a is the plate thickness, Rij is the reflection

coefficient in medium i from medium J, Tij is the transmission coefficient for

a wave incident in medium i and transmitted into medium j, k=w/c, c is the

phase velocity in the plate, and

POC0 - PC
R12 = oC0 + pc R21'

2Po0C 
0

T12 = PoCo+pc =2-T 2 1, (3)
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where po and p are, respectively, the density of water and the plate

material. The entire reflected field, ur = + + + ....0, +may be

written as

u Rl2fo(S-s2) + T 2R21T21  m 1 fo(S-Sm) (4)

sm =2 koa + m 2kh

In an exactly analogous manner, one can write down the expressions for

the transmitted pulses. With s = t - kox

u4 = T12T21f0 (S-S4); s4 = h(k-ko)

u8 = T RI 21 fo(S-S8); s8 = h(3k-k o) (5)u 12  212 21 0 h()-k;

12= T R4  T fo(s- s
u =12 21 21 o 12); 12 = h(5k kC,

etc.

The total transmitted field may be written as

u a12 T1R 2f (S-SM); sm = h 1(2m+l) k-ko] (6)

In eqs (4) and (6) m is the number of complete round trips taken by the wave

across the plate thickness h.

The Fourier transform of a function f(t) is defined as
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F*(w) s. ff(t) itdt, - (7a)

with the associated inverse transform given by,

f(t) =- 5 F*(w) eiWtd j (7b)

2.1 Analysis for Thick Specimens

We first consider the case of a relatively thick specimen such that

various pulses in Fig. 1 can be clearly separated from each other in the time-

domain. Let f(t) be the signal corresponding to ray 2 and g(t) be the signal

corresponding to rays 2 and 6 combined sensed by a transducer at x=O. (This is

the so-called pulse-echo mode). Then

f(t) = R12 f 0(t - 2ko (8)

and g(t) = T12R2 1T2 1f0 (wt - 2k0a - 2kh) + f(t). (9)

Let F (w), G (w) and F0 (w) be the Fourier transforms of f(t), g(t) and fot),

respectively. Then,

. -i2koa
F (w) = R12 e Fo (0 ) (10)

* * -12k a 1i2kh
G (w) - R12Fo(w) e o1 - T12 T21  (11)

and G 1 -T 1 1 i2kh (12)
F (w) 1221
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It is emphasized that in the foregoing it is assumed that the plate

behaves in a perfectly elastic manner i.e. the wavenumber k is real and

1I2khc-w/k is a constant. The key term in eqs (11) and (12) is e or

-i~hw/ce / Thus, in eq (11) if one plots IG*(w)I vs w it will be

characterized by a series of resonance peaks whose spacing is given

by a(2hw/c) = 2,, or in view of w = 22f

c = 2h Af (13)

Measurement of c in aluminum using eq (13) is illustrated in Fig. 2. Here

F(-) = IF*(w)l and G(w) = IG*(w)I. Note that G(w) consists of the

transducer response, F(w) superimposed by an oscillation due to e-i2hw/c

term.

A further improvement in the measurement method can be achieved by

plotting (G (w)/F (w) - 1), eq (12). This is illustrated in Fig. 3. By

taking out the shape of the transducer response we are left with oscillations

due to the constructive and destructive interference between the front-surface

(ray 2) and back-surface reflections (ray 6).

Even though eq (12) is derived for an elastic material it is rigorously

valid for a linear viscoelastic material provided the damping is small i.e. in

kuk 1+ik2 , k2/kl<< . This elementary proof is deferred to the appendix. We

rewrite eq (12) as

i2kh = _ (G*(w)/F*(w) - 1)/T 12T2 1 = Me1  (14a)

Then, kl(w) = - */2h
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and

k2(w) = (1n M)/2h, (14b)

where M = I((G*(w)/F*(w)) - 1)/T 12T2 1 1

Since kl(w) = w/c and w = 21f

4r.h

(TIf and k2(w) (1n4)/2h. (15)

These are the desired equations for calculating the phase velocity and the

attenuation.

Now consider the transmitted field for a thick specimen. Two

measurements are made. In the first, the specimen is removed from the water

path i.e. the wave travels solely through water. Let the receiving transducer

be located at some x = 1 > b. Then uinC(l,t) - f(t) = f (wt - k 1) The

specimen is now inserted in the wavepath and the signal due to ray 4 alone is

recorded. Thus, u4(lt) g(t) = T12T21f0 (wt - k01 2k0a - kh). Then,

-i(kh+koh)= T1T21e(16)
GF(w) T 12 T21e 0F (w)

ik 0h

If G (M)e is set equal to Me I then
F (w)T12T2 1

kl(w) = - */h (17a)

and k2 (w) - (In M)/h (17b)

9



where M = -F*(w I IT12T21

Substituting k1 = 21f/c, we get

2ih/7f and k2(w) In M/h (18)

Another variation of this technique is when signals for both rays 4 and 8

are quite large. Then the following approach yields more accurate results

because the data reduction can be done from a single experiment. Let f(t) and *1
g(t) be the signals corresponding to rays 4 and 8, let F (w) and G (w) be

their Fourier transforms then

G-R2 2kh (19)
F 2 1

As before, if we set G(,,)/F*(w) R = Me then, Eq. (15) can be used to

calculate the wavespeed and attenuation. In the following for brevity, these

methods will be referred to as Second/First method.

We note that this method is equally effective for dispersive media. From

eq (14) one plots k, vs. w. A secant to the curve yields inverse of the

phase velocity (phase slowness). For dispersive media a quantity of interest

is the group velocity. This is the speed with which energy propagates in a

medium, cg- aw/ak 1 ; this too can be computed from the phase plot, and eq

(14b) yield frequency dependent attenuation. Finally, we introduce a

normalized attenuation k2x. This is the attenuation of a wave over one

wavelength. The motivation for this particular normalization is that for a

linear viscoelastic material k2 x is independent of frequency.

10



2.2 Analysis for Thin* Composites

The total reflected field comprising rays 2, 6, 10, 14 ..... at x=0 is

given by eq (12) as

u r(o,t) g(t) = R 12 fo0(wt-2koa )

+ T1R2T R 2(m-1)f o(wt-2koa-m2kh) (20)

12 2121 ~21 a a(0

Note that ray 2 cannot be used as the reference signal. One has to conduct a

separate experiment as follows: the thin coupon is replaced by a thick coupon

with the front surface precisely at x=a. Let the front surface reflection be

labeled f(t), then

f(t) = R12fo(wt-2k0 a)

.- i2ko0a.

F (W) = R12e F ( )

* * w 2m1F*

G (w) =F (w) + T12R21T21  R2 (m F().

-i[2k a + m 2kh]
e (21)

~~2 12kh, Z < ,( 2
Let zzR 11 (22)A21 ik

In this paper the qualifiers "thick" and "thin" are used in the following

sense. When various reflections or transmissions corresponding to a short-

duration pulse can be separated in the time-domain, the specimen is considered

thick. But the duration of the pulse depends on the center-frequency of the

transducer. Hence the use of the word thick is quite arbitrary.

11



Then, G 12T21 - Zm
F R12R21 *=I

Observing that for IZI 1 , (1-Z - = +Z+Z2 + ... , and defining

R R12R21(G-w -1) we get
12121 F(w)

Z T-1 (23)

From Z one can readily calculate the complex-valued wavenumber k(w).

For completeness we include here a variation of this method. Suppose a

thick coupon to obtain a reference signal is not available (this difficulty

will be discussed later). One can then use a thick specimen of some other

material; we have used a block of aluminum. Let the acoustic impedance of

this material be o0c,. Let the front-surface reflection be

f(t) - R f0(wt-2k0a) where the reflection coefficient

R = (oCo - pIC1)/(PoC 0 + pic,), and g(t) is still given by eq (18). As

before with

RTRR21,I ) -11, (24)
12 21 T- 12 F*(M

Z = R2  -ikh = 0/(0+8) (25)21e

In the following for brevity these methods will be referred to as

All/First method.

We now consider the transmitted field. Here a second transducer is used

as a receiver at some x - k>b. To obtain a reference signal the specimen is

removed and the signal through water is recorded.

12
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f(t) = ulfnC(lt) fo(wt-k01)

Let g(t) be the total transmitted field, rays 4, 8, 12, ...- then from eq (6)

g(t) = T 2T21  R2  f t-k l-h{(2m+1)k-k°}1 (26)1221 21 0 o

,G G*( =T 12T21eih(k-ko)= _ t (27)
F * (w) 1-R2  i12kh

21

We note one major difference between eqs (23) and (27). Unlike eq (23), eq

(27) is a quadratic in Z = exp(-ikh). This presents some additional numerical

problems. These are discussed next. Equation (27) may be rewritten as

Z2 + ZY - = 0

where

Y = R 2 . (28)
21 o G (w)

Zo = exp(-ihk0 )

D - 1/R2
0 21

and ko is the wavenumber in water. Since the phase velocity in water is known,

Z0 is known a priori. If the acoustic impedance of the plate, pc, was known,

one could calculate Tjj and Rtj. However, c is precisely the unknown we are

seeking to measure. This problem could be solved by a simple iteration

procedure. An approximate phase velocity was initially used in the algorithm

to estimate Ttj and Ri3 . The quadratic equation (28) is solved and two roots

13



of Z are obtained. The correct root is chosen based on the fact that the

phase of Z decreases as frequency increases (for the other root the reverse is

true). This velocity is used for the next iteration cycle. This procedure

converges very rapidly. When we purposely supplied an initial phase velocity

with a very large error (30%), the convergence was found to occur in about

five iterations. More realistically, the wavespeed can be estimated to within

five percent. Here convergence to within 0.01 percent occurs within three or

four iterations. When the value of c obtained by this procedure was

substituted back into eq (28) to calculate attenuation, k2x was found to be an

oscillatory function of frequency for a linear viscoelastic material, namely,

an epoxy. Now, it is well-known that for a such a material k2x is a

constant. The oscillating nature of k2k could, however, be readily explained

as follows. A detailed numerical examination of eq (28) revealed that the

calculation of k2x is very sensitive to small variation in the phase velocity

c. The oscillations were due to the fact that the measured velocity was

different from the true velocity. This problem could be resolved in the

following manner. If one takes the absolute value of both sides, eq (25) can

be re-written as follows:

cos 4whf + T12T21 )2 F W) I IR2  eqf 1 (29)
c 2 R) 2 21 2q

where q - 2h k2 /c.

The terms in eq (29) have been separated judiciously as follows. The left

hand side (LHS) is a function of wavespeed only while the right hand side

(RHS) depends on both, the wavespeed as well as the attenuation. The RHS is a

sum of two exponentials and, therefore, is not an oscillatory function of

frequency f. On the other hand, the LHS is the sum of a cosine function of

14



frequency and 4he experimentally determined F*(w)I/G(w) which was found to be

oscillatory. Now if the correct value of c is not used in eq (29) the periods

of the two terms do not match and the oscillatory parts do not cancel each

other as they would for the correct value of c. With this in mind, the RHS is

viewed as the reference curve and a numerical search is made around the value

of c obtained by the iterative procedure described earlier, to minimize the

root-sum-square of the LHS. This fixes c. Now we view the LHS as the

reference curve and conduct a numerical search over a range of k2x so as to

minimize the root-sum-square between the LHS and the RHS. This fixes k2.

Finally, it is noted that the theoretical procedures developed in this

section are equally valid for both the longitudinal as well as the shear

disturbances.

3. EXPERIMENTAL PROCEDURES

3.1 Measurement Procedures

A schematic of the apparatus is shown in Fig. 4. The heart of the system

is a pair of accurately-matched, broad-band, water-immersion, piezoelectric

transducers. An experiment is initiated at time t=O by a triggering pulse

produced by a pulser/receiver; the pulse is used to trigger a digitizing

oscilloscope; simultaneously the pulser/receiver produces a short-duration

(about 100 ns) large-amplitude (about 200 volts) spike which is applied to the

transmitting transducer. In the reflection mode it also acts as a receiver.

The received signal is post-amplified (to about one volt) and then digitized

with maximum sampling rate of 100 MHz (or 10 nanoseconds per point). To

reduce the ubiqjitous random errors, each measurement is averaged over a

sample size of 64. A laboratory computer controls all operations of the

digital oscilloscope through an IEEE bus. The built-in signal processor of
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the oscilloscope performs FFT on the acquired signals and the relevant parts

of the data are then transferred to the computer for further analysis.

3.2 Calibration Procedures

Since our objective in this research is to estimate damage in composite

materials from a measurement of the ultrasonic parameters, accuracy is of

prime importance. For example, one percent error in estimating the phase

velocity may, for some typical laminates, correspond to a ten percent error in

estimating the remaining fatigue life. At present, we can measure velocity in

monolithic materials to an accuracy of 0.1%, and velocity and attenuation in

heterogenous materials to an accuracy of 0.2% and 2%, respectively. In order

to achieve this accuracy the measurement system was subjected to systematic

calibration procedures; these are described next.

3.2.1 Sampling Interval

The analog signal from the transducer is digitized at a specified

sampling interval by the digitizing oscilloscope. The object of this study

was to determine an upper bound on the sampling interval below which the

harmonic distortion was considered acceptable. We quote here the limits on

the sampling interval as specified by the sampling theorem 7, "If the sampling

interval T Is chosemi equal to I/2fc, where fc is the highest frequency

component of the signal, allasing will not occur". Allasing is defined as

"The distortion of the desired Fourier transform of a sampled function". An

experimental verification of this statement is given here. Figures 5 and 6

show the amplitude and phase response of a 10 MHz transducer at sampling

intervals of 10 nS (100 MHz), 20 nS (50 MHz), 40 nS (25 MHz), and 100 ns (10

MHz). The highest frequency content of this signal is about 10 MHz and so the
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sampling interval of 50 nS would be acceptable from the viewpoint of

aliasing. It is obvious from Fig. 5 that at 10 nS or 20 nS sampling intervals

the frequency content of the signal is essentially the same. However, at 40

nS sampling intervals significant distortion of the amplitude is observed; but

the phase remains relatively unaffected. At 100 nS, both the amplitude and

the phase plots are completely distorted. This would come as no surprise for

here we are sampling only one point per cycle. In this work we have used

either 10 or 20 nS sampling interval.

3.2.2 Frequency Resolution

It is seen from eqs (15) and (18) that wavespeed can be calculated if the

slope (o/f) of the phase vs. frequency curve can be obtained. The FFT

algorithm provides the real and imaginary components of the transformed

signals and from these the phase is calculated. Computer can provide the

phase angle in the range of - 1/2 to + v/2 from which the angle in the range

of 2r can be deduced very easily, depending on the quadrant in which the

phaser lies. Hence we obtain a sawtooth type phase vs. frequency plot. It

was observed that for the signal under consideration, phase increases

monotonically with the frequency. Thus the sawtooth plot has to be converted

to a continuous phase vs. frequency curve before its slope can be obtained to

calculate the wavespeed. The computer algorithm developed by us tracks the

rotation of the phase vector and 2% radians are added to the phase each time

the vector completes a cycle.

Let the sampling interval be T and the total number of sampled points be

N. The total length of the signal is To a (N-1)T. Let the frequency

resolution be af, then af - I/To a 1/(N-1)T. The consideration of aliasing

fixes T. Hence N is the only parameter that can be adjusted to obtain the
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desired frequency resolution. For example, if the desired

af-O.05 MHz/point, T is 10 nS, then N-2000 or 2048. The length of a signal

can be readily increased simply by adding zeros at the end of the signal. Of

course, this is accompanied by an increased computation time.

3.2.3 Transducer Response

The frequency response of a transducer with a center-frequency of 10 MHz

is shown in Fig. 7. Experience indicated that satisfactory measurements can

be made over a frequency range (or band width) given by 25% of the peak

amplitude response as shown in the figure. It was observed that the phase vs

frequency curve over this range is a straight line; outside it becomes non-

linear.

4. RESULTS AND DISCUSSIONS

4.1 Wave Propagation in Non-dispersive Media

The main objective of this work is to develop techniques suitable for

very thin specimens. Therefore, we subjected our techniques to the following

critical test. A thick aluminum plate (2.807 t 0.0025 m) was first tested

using the conventional toneburst method. Then the thickness was gradually

machined down to 0.258 mm (about 10 il, a very thin foil) in five steps. In

non-dimensional terms the thickness was reduced from about 4.4 to 0.4

wavelengths; a frequency of 10 MHz was used. At each step c was measured. We

could have used five different samples. Instead we adopted the foregoing

procedure in order to ensure that we are always testing exactly the same

material. The density was measured by the Archimedes principle. Our estimate

of the error in density is ± 0.015%. The results are presented In Table 1.

The first measurement was made using the conventional toneburst method8 '9.

18



The time-domain signal is shown in Fig. 8(a). A particular peak (say the

fourth peak) near the center of the toneburst is selected as the reference

peak. The twice-transit-time, 2h/c could be measured to an accuracy of 1

nS. Our estimate of error in the phase velocity is 0.2%; see Ref. 10 for a

detailed error analysis. In the second measurement the toneburst was reduced

to about one cycle; see Fig. 8(b). Note that the pulses can be clearly

separated. The Second/First method, eq (15) was used to analyze this data.

Since only the first two pulses are needed for data analysis, the remaining

pulses are electronically gated out or nulled. In the third measurement, the

data analysed remains the same i.e. Fig. 8(b). However, the All/First method,

eq (27), is used. In other words, g(t) is now viewed as the sum of all

transmissions. For the remaining measurements the specimen was gradually

machined down. All/First Method was used to analyze the data. The pulses for

h-1.686 mm are shown in Fig. 8(c). Note that the conventional toneburst

method can no longer be used; though both methods developed in this work can

be used, we used the All/First method. The pulse for the next three

thicknesses, h=1.001, 0.613 and 0.258 mm are shown in Figs. 8d, Be, 8f,

respectively. Because of the reduced thickness the pulses cannot be separated

in the time domain. Therefore, even the Second/First method cannot be used;

here we have to use the All/First method. For the thinnest specimen the round

trip time is only 82 nS; the pulse duration is roughly 200 nS. This given

rise to what appears to be "ringing" In Fig. 8f.

With reference to Table 1, the average of all the measurements is 6.342

1/Psec ± 0.25%. We conclude that the All/First method developed for ultra-

thin (sub-wavelength) specimens and the Second/First method for moderately

thin (about one wavelength) specimens yield results which agree to 0.25% with

the conventional toneburst method. (We hesitate to make absolute claims on
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accuracy because for the given piece of aluminum we do not know the true value

of the phase velocity).

The ideal method for "calibrating" a new experimental technique is to use

it to measure a quantity which is known with a ten times better accuracy.

Unfortunately, the National Bureau of standards has not yet developed a

standard for acoustic velocity (or elastic modulil). Our laboratory did,

however, participate in a six-laboratory ASTM round-robin conducted by Dr.

Alan Wolfenden 11, (Department of Mechanical Engineering, Texas A8WM University,

College Station, Texas 77843). This allowed us an opportunity to compare our

error-estimates with those of the others. The material tested werp two

nickel-based alloys; see Table 2 for a material and geometric description.

Since these specimens are very very "thick" (several wavelengths), the

Second/First method, eq (15), was used. Furthermore, shear velocity was also

measured. Here a shear (or Y cut) transducer was directly cemented onto the

metal specimen using a shear couplant. Ignoring the "main bang," the

remaining reflected signal was collected. From the measurements of the

longitudinal and shear velocity, c1 and c2 , and density p, the elastic

constants E and v can be readily calculated. The results of the round-robin

test are presented in Table 3. Reasonably good agreement (within 2.5%) is

observed between the results obtained in different laboratories using

different techniques.

Next, we have tested our experimental method on a medium which is non-

dispersive but attenuative. An epoxy (EPON 828Z) was selected for this

purpose. The results are presented in Table 4. Note that three frequencies,

spanning nearly a decade, were used. The phase velocity measured by the

toneburst method on a thick specimen is 2.915 mm/usec and agrees very well

with that measured with the All/First technique.
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4.2 Wave Propagation in Dispersive Media

Finally, we have tested our experimental procedures on a material which

is simultaneously highly dispersive as well as highly attenuative. Towards

this end we tested a random particulate composite consisting of lead spheres

in an epoxy matrix. These composites have been described in 12,13.

Transducers with 0.25 MHz center-frequency were employed. Second/First method

in through-transmission mode, eq (16). was used.

Kinra13 has shown that wave propagation in these composites occurs along

two separate branches: (1) The low-frequency, slower, acoustical branch along

which the particle motion is essentially in phase with the excitation and (2)

The high-frequency, faster, optical branch along which the particle motion is

essentially out of phase with the excitation. The two are separated by a cut-

off frequency which corresponds to the excitation of the rigid-body-

translational resonance of the heavy inclusions; this occurs when kja = 0(1),

where a is the inclusion radius. Around the cut-off frequency both the phase

velocity and the attenuation change dramatically with frequency. This is what

makes this composite such an interesting material to study using our technique

which was developed especially for dispersive media.

The results for a dispersive material are presented now. In Fig. 9

F (w) is the receiVed signal with the specimen removed while G(w) is the

signal with the specimen in place; E is the volume fraction of inclusions.

The dip in the amplitude of G*(w) corresponds to the cut-off frequency. The

present measurement, fc-0.21 MHZ., agrees quite well with the earlier

measurement 12 using the conventional tone-burst method. We now introduce a

normalized frequency a = kla - 21fa/c1 and a normalized wavenumber

- k1  a - 2fa/<ci> where < > refers to an aggregate property of the
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comosite (an ensemble average). Fig. 10 shows the frequency vs wavenumber

plot. As expected12, along the acoustical branch at low frequencies the

behavior is non-dispersive; a straight line fitted through the data points

passes through the orgin (<c1>/c1 - 0/&). Same was noted at high

frequencies along the optical branch. These two observations serve as

critical checks on the accuracy of our measurement. The normalized phase

velocity is given by the slope of the secant, <cc1>/C1  o/ , and the group

velocity is given by the slope of the tangent, <cg>/C I = do/d&. The

discrete toneburst data from the earlier work 12 " 14 is also plotted; the

agreement is considered quite satisfactory. The present technique is

tremendously faster; the entire dispersion and attenuation curve is produced

in a single experiment. Another major advantage of this method is as

follows. When one uses the toneburst method, each point suffers a scatter due

to random errors; see Fig. 10. In the present method the whole curve may

shift up or down but the shape of the curve will not be altered by the random

errors. Here we are mainly interested in the shape of the dispersion curve.

Fig. 11 shows the normalized phase velocity versus trequency. The arrow

labelled HASHIN is the velocity calculated from the lower (appropriate) static

bound due to Hashin and Shtrikman15 . The agreement between the theory and the

low-frequency results is considered quite satisfactory. As a increases the

effective inertia of the lead spheres (-pw 2 ) increases and the phase velocity

decreases. At very high frequencies (it is conjectured) the inertia becomes

so large that the spheres become essentially motionless. Thus they no longer

contribute to the inertia of the composite as perceived by the effective

wave. Hence the velocity increases dramatically across the cut-off frequency

and becomes frequency-independent at very high frequencies. Fig. lb shows

the group velocity i.e. the speed with which energy flows in a composite. As
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expected, the group velocity is essentially constant at low and high

frequencies; around the cut-off frequency, act it undergoes large

fluctuations. Theoretically, c g- at two points around the cut-off

frequency. Perhaps the most interesting feature is that the group velocity

becomes negative around act i.e. as the wave propagates in the positive x-

direction, the energy flows in the negative x-direction. In Fig. 10 this

corresponds to those points on the curve where the slope is negative.

In Fig. 12 we have plotted attenuation versus frequency. The peak in the

curve defines the cut-off frequency. For comparison k2 x for the neat epoxy

alone is 0.13 which is negligibly small compared to the peak attenuation.

Thus all of k2x may be attributed to the scattering effects.

4.3 QNDE of Damage in Composite Materials

We now demonstrate the application of our technique to fiber-reinforced

composite materials. Graphite/Epoxy AS4/3502 crossply 106/904/021s laminates

were tested. These were subjected to monotonic tensile loading. As a result

transverse cracks develop. Edge replication was made to obtain a record of

the transverse cracks. The loading was interrupted at several points along

the load axis, the coupon was subjected to an ultrasonic examination and the

loading was resumed. The Second/First method in the reflection mode, eq (15),

was used. In Fig. 13 we have also shown the portion of the edge replication

which is insonified by the ultrasonic beam. The number of cracks seen by the

beam Is also listed. Note that we have not plotted the attenuation k2X but

rather the changes in k2x caused by this damage. To guard against for

fortuitous results three different frequencies were used, namely, 2.25, 5.00

and 7.50 MHz. We note that attenuation changes quite significantly and
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monotonically with the number of transverse cracks. We also note that in the

range of frequency tested, the attenuation decreases with frequency. This may

be attributed to the fact that these experiments were conducted at kla=1.23,

2.70 and 4.02, where a is the half-crack-length, at 2.25, 5.00 and 7.50 HHz,

respectively. Fig. 14 shows the longitudinal phase velocity at the same three

frequencies. Within the errors of measurement, ±0.2%, the phase velocity

remains constant with damage. This is not at all surprising, in view of the

fact that here the wave-vector (or the particle displacement vector) is

parallel to the crack face i.e. the crack-wave interaction is very weak. Thus

we conclude that for the present case while the attenuation is a good measure

of the damage, velocity is not.

5. CONCLUSIONS

We have described a new experimental technique which can be used to

measure phase velocity and attenuation of ultrasonic waves in very thin plates

(down to a thickness which is three orders of magnitude smaller than the

wavelength). We emphasize that in the development of this technique we have

taken a "black-box" approach i.e. it would work for any material so long as it

behaves in a linear viscoelastic material and the attenuation is not large.
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APPENDIX

Consider one-dimensional monochromatic, time-harmonic wave propagation

along a rod made up of a linear viscoelastic material, e (.t-kx) . At any

frequency w the complex-valued wavenumber is k(w) = kl(w) + ik 2 (w). If

attenuation is small the phase velocity c - w/k1 ; k2  is the attenuation i.e.
-k 2 x

the amplitude of the wave decays as e Now suppose a pulse is propagating

down this rod and is given at x=O by f(t).

Let

F() I .ff(t) i tdt (A l)

Then

f(t) = J'F*(w) ewtdw (A 2)
/-n

For the sake of this discussion f(t) may be viewed as an infinite sum of

wavelets of the type,

f(t) = (F M)\ eiWt (A 3)/2

Consider a propagating monochromatic "wavelet" of complex-amplitude,

;f2;" " eIt t kx). In eq (A3) f(t) may be viewed as an infinite sum of such

"wavelets" at x-O. Furthermore, at some arbitrary x the wavelets may be

summed up to yield

g ft ( F Mwdw ikx ) eiwt
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If G is the Fourier transform of g(t) then

G*(w) =F (w) etkx

or

G ( ikx
F(w)

We have shown, therefore, that eq (12) which was originally derived for a

perfectly elastic material is valid for a linear viscoelastic material

provided the attenuation is small (k2/kI < 0.1) which is generally the case

with engineering materials and certainly is the case for all materials tested

during this work.
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TABLE 1. Test Results on Aluminum Sample

Material: Aluminum
Wave Type: Longitudinal
Mode: Transmission
Frequency: 10 MHz
Density: 2.8177 ± 0.0004 g/ml

h hx c aI/C Technique Reference
-m mm/wsec %Figure

2.807 4.4 6.3572 Toneburst 8a

2.807 4.4 6.3239 0.013 Second/First 8b

2.807 4.4 6.3275 0.010 All/First 8b

1.686 2.7 6.3461 0.040 All/First 8c

1.001 1.6 6.3538 0.030 All/First 8d

0.613 0.96 6.3594 0.130 All/First Be

0.258 0.4 6.3231 0.140 All/First 8f
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TABLE 2: Results of ASTM Round-Robin Tests of NI based alloys

Sample 1 : INCONEL ALLOY 600
Composition: NI 37.46, C 0.01, Co 14.38. Nb 4.71, Ti 1.46, Fe 41.98
Test Frequency: 5.0 MHz
Mode: Reflection

Sample 2 : INCOLOY ALLOY 907
Composition: NI 74.91, Cr 15.48, C 0.08, Fe 9.53

SAMPLE h p c1  c2  E v
n g/ml mm/sec mm/psec GN/m 2

1.2 6.263 8.371 5.872 3.161 216.9 ± 0.14% 0.2960 t 0.20%

1.4 6.365 8.373 5.877 3.163 216.6 ± 0.15% 0.2960 ± 0.20%

2.1 18.848 8.267 5.273 2.7308 163.0 ± 0.26% 0.3153 + 0.18%

The fVrst digit (1 or 2) refers to the alloy while the second digit (1-4)

is merely to identify different physical specimens.
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TABLE 3: Comparison of ASTh Round Robin Tests for the Young's Modulus, E

SAMPLE/LAB 1.1 1.2 1.3 1.4 2.1 2.2 2.3

1 218.0 216.9 218.5 - 161.5 159.9 157.2
218.0
218.1

2 210.5 209.2 - - 164.1 - 155.7

3 218.8 216.0 217.5 162.0 -
217.0 - 161.8 - 158.4
216.2 160.8
217.3

4 212.0 205.0 - 156.0 - 172.0

5 215.6 - 214.2 - 156.0 - 162.0

6[This Work] - 216.9 - 216.6 163.0 - -

7 203.0 - 210.3 - 156.8 - 155.8
158.0

Units for above values: GN/m2

Techniques: -

LAB. 1, 2, 7 Free-Free Beam
LAB. 3 Impulse Fourier
LAB. 4 Pulse-Echo-Overlap Ultrasonic
LAB. 5 Piezoelectric Ultrasonic Oscillation (PUCOT)
LAB. 6 This work
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TABLE 4: Test Results on Epon 828-Z Epoxy

Material: Epon 828-Z epoxy
Wave Type: Longitudinal
Mode: Transmission

Specimen thickness 1.869 mm ± 0.0025
Specimen density 1.2069 ± 0.0004 g/ml

Test Frequency Wavespeed k k2X Technique
MHz mm/usec %

1.0 2.874 0.1 0.1340 1.4 All/First

5.0 2.884 0.14 0.0924 1.5 All/First

10.0 2.915 0.08 0.0975 1.0 All/First

10.0 2.915 0.24 0.0979 2.2 Toneburst
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List of Figures

Fig. 1 Various reflections and transmissions from a plate immersed in

water.

Fig. 2 Magnitudes of Fourier Transforms of f(t) and g(t) when pulses can be

separated

Fig. 3 Magnitude of G (w)/F (w) -1, from Fig. 2. Resonance spacing can be

measured easily from the zero line crossings.

Fig. 4 Block diagram of the experimental set up.

Fig. 5 Amplitude response of a 10 MHz transducer at different digitizing

intervals.

Fig. 6 Phase response of a 10 MHz transducer at different digitizing

intervals.

Fig. 7 Useful frequency range of a 10 MHz transducer.

Fig. 8 10 MHz signal through aluminum plates of different thickness. (a) is

for toreburst Others are for a single pulse of signal. Plate

thickness given on each signal.

Fig. 9 Magnitude of F (w) IFFT of signal through polystyrene delay rod) and

G*(w) IFFT of signal through polystyrene and Lead/Epoxy specimen].

Note the dip in amplitude at the cut-off frequency, fc.

Fig. 10 Frequency; a - k1a and wavenumber; t = <kl>a curve for a dispersive

Lead/Epoxy specimen. Circled points are data from reference 12-14.

Fig. Ila Normalized phase velocity and frequency curve for the dispersive

Lead/Epoxy specimen.
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Fig. l1b Normalized group velocity and frequency curve for Lead/Epoxy

specimen.

Fig. 12 Normalized attenuation and frequency curve. Note a very high

attenuation (large energy absorption) due to dispersion at the cut-

off frequency, ac.

Fig. 13 Attenuation increases dramatically with transverse cracks in Gr/Ep,

10690402]s laminate at all three frequencies tested. Extent of

damage is shown in the edge replication sketches.

Fig. 14 Longitudinal wavespeed variation at three different frequencies with

transverse cracks in a Gr/Ep, (02904021s laminate.
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Ultrasonic Nondestructive Testing of Fiber Reinforced
Composite Materials

VINAY DAYAL- AND V. K. KJNRA** J. G. EDEN--
Texas A&M University General Dynamics

College Station, Texas, USA. Fort Wrth, Texas, U.SA.

ABSTRACT A fully computerized technique for the measurement of
wavespeed and attenuation has been developed. The tech-

nique can be applied to a thin specimen . It has been used to me-
asure damage in specimens made of Magnamite AS4/3502 Graphite/
Epoxy. It has been observed that attenuation is a reliable mea-
sure of damage due to microcracks. To the best of our knowledge
Lhi i Lne firuz technique which can be used to interrogate very
thin specimens.

INTRODUCTION It is well known that fiber-reinforced composite
materials develop a complex damage state when sub-

jected to mechanical or thermal loading. The residual strength or
fatigue life depends upon the current state of damage. When the
damage occurs, it has two effects upon the propagation of a mech-
anical wave through the composite:1.It affects the stiffness and,
therefore, the speed of wave propagation; 2.It increases the
attenuation of the wave. Thus the ultrasonic parameters,wavespeed
and attenuation, are a measure of the damage of the composite.

A new technique of ultrasonic NDE of composites is present-
ed here. Ultrasonic NDE has been around for years. However, none
of the existing techniques work satisfactorily for thin laminat-
es for the following reason: the wave reflection from laminate
faces are too close in the time domain and interfere with each
another. A new technique has been developed based on the follow-
ing theorem of the theory of Fourier transforms: the closer two
events are in the time domain, the farther apart are the corres-
ponding events in the frequency domain. The technique developed
here yields accurate measurements of wavespeed (or stiffness) and
attenuation (or damping) of longitudinal and shear waves in the
thickness direction.

The development of the technique and some results from its
application to fiber-reinforced composite,Graphite/Epoxy ASJ!/3502
laminates, of a variety of stacking sequences are presented.

* Grad Student Aerospace Engg.,Texas A&M Univ.,Coll. St. TX 7 78 4 3
G Assoc. Prof Aerospace Engg.,Texas A&M Univ.,Coll. St. TX 7 78 4 3

*** Engineer,Adv.Methods Gr.,General Dynamics,Fort Worth TX 76101

899



900 TESTING AND EVALUATION

THEORETICAL ANALYSIS Consider a plate of a linear viscoelastic
material sandwiched between two half-spaces

of perfectly elastic materials. Consider also, a finite duration
pulse,ray 1,incident at the viscoelastic plate as shown in fig.1.

Fig.1 Pulse reflection and transmission by a plate.
Due to the mismatch in the acoustic impedence of the three

materials, there will be an infinite series of reflected and tra-
nsmitted pulses. These pulses contain information about the acou-
stic properties of the viscoelastic zaterial.

Let the displacement field along the incident ray 1 be giveninc
by u . f(wt-kox), where f(s)EO for s<O and w and k, are
circular frequency and wavenumber of the first half-space,res-
pectively. The total reflected field is the sum of the following
rays, with (h=b-a and s=wt+kox).

u 2=R1 2f(s-sa); s2=2ka
u'=T2 2R 2 3T 21 f(s-s 6); s6=2koa+2kh
u 1 0 =T 3 2 R 2 3 R 21 R2 3 T2 f(s-s,.); s, 0 =2koa+4kh
where T.. Transmission coefficient from medium i to j

R..-Reflection coefficient from interface of media i&j1 jwith wave incident in medium i
The sum of these rays is

ur =Rf(s-2koa)+T 2 R 23T,,7(R 1 2R2a3)m
- f(s-s );s =2ka+m2kh (1)

m=O 
M

Similarly, the sum of the transmitted field can be written
as

u =T 1 2T 2 3i(R21 R2 3 )
m f(s-s m); s =a(k 0 -k,)+h[(2m+1)k-k 3] (2)m=O m o m

It is to be noted here that k for a viscoelastic plate is a
complex wavenumber,

If we consider a plate immersed in water then in the above
analysis, the two half spaces are identical and the equations (1)
and (2) reduce to O 2m-1)

u =R1 2f(s-2koa)+T,1 R21 T 2 LR 21  f(s-s ); sm 2koam2khOt I mm m 1
u t=T,2T2,JR 2,f(S-Sm) Sm~h[(2m+1)k-ko]

M=O
Let us define the Fourier Transforms as

F = _ f(t)e -i t

CO iit

F 2w=~~~~'u dt* 1I -iwt
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from these we get

i2k a *
F(w)=e F (W) inc

If the incident field is u =fo(wt-kox),the reflected field
r

is given by u =Rfo(wt-kox-2koa) where R=(poc,-pc)/(poco+pc). Let
the reflected signal as sensed by the transducer be f(t), then
f(t)=f,(wt-2koa). It can be readily shown that at x=O, the total
reflected field is given by

r OP ei t -i2kka e-i{2koa+2mkh}

w2m-1 m=1
where m.T 1 2R2 1T2 1 R2 1

Let ur(O,t'=g(t) and G (w) be the Fourier transform of
g(t), then

Gim h 2iko a  ](3
Lsme-i2mkh [Ie R 121 (3)

m=1 F
Since 1+z+z 2 +z 3+ ---- =/(1-z) for Iz<1
Equation (3) can be written in thq form

Re-i2kh G a * I 4
R=e , where =1T(4)

By measuring F ( FFT of the front surface reflection and 0
(FFT of the total signal with all reflections) the complex valued
k(w)-k,+ik 2  can be obtained from eq.(4).

Similarly, from the transmitted field it can be shown that

-ih(k-k 0 ) * (W)

-i2kh * (5)
1-RI 2e TZ 2T 2 1 F (w)

Here r is the F T of the signal at the receiver when
there is no sample and G is the FFT of the total signal after
the sample has been introduced in the path.

The preceeding analysis is useful even when the sample is
thin and the pulses in the received signal are indistinguishable
from each other. However,if the pulses can be seperated out then
any two pulses can be used to obtain

*
G -i2kh

-, -T 1 2T 2 1 e (6)
F
where F is the FFT of the first pulse and G is the FFT of

two pulses. Substituting k-k,+ik 2  into eq.(6), where k,=2Nf/c, k,
is attenuation, c is wavespeed and f is frequency and comparing
the real and imaginary terms on tfhe wo sides we get
kI-2Inf/c-/2h or c- 4 h/(/f) andq attenuation k 2 = In -1n(T 1 2 T 21 )I
where 0 is the phase of G /F -1 and M=IG /F -!1.Detailed
derivation of these equations is given in [I].

TECHNIQUE DEVELOPMENT Keeping in view the tremendous speed and
reliability which can be achieved by using

computers for collection and analysis of data, the equations dev-
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eloped above were interpreted in a way most suitable for computer

analysis. Several potential sources of errors were studied next.

These are:(1) Sampling Interval,(2) Frequency resolution,(3) Tra-

nsducer response and (4) Adequacy of pulse seperation. The first

factor is the digitizing interval for the signal. FFT of a 10 MHz

signal at 1Ons(t00 MHz), 2Ons(50 MHz) and 40 ns(25 MHz) sampling

intervals was studied. It was observed that at 10 or 20 ns the

frequency content of the signal is essentially the same. However,

at 40 ns sampling interval the signal loses some of its high fre-

quency content. The second factor considered was the resolution

of the signal in the frequency domain. A sampling frequency of 50
MHz or higher is being used and a resolution of 0.1 MHz or less

on the frequency domain is considered adequate. The third factor

considered was the useful range of the transducer frequency
response. The FFT of the first pulse is shown in Fig. 2b. It was
found that satisfactory measurements can be obtained over a freq-
uency range given by 25% of the peak amplitude. Fourthly, with
reference to Fig.2a, another source of error is that the operator
has to decide where the first pulse ends and the second one

starts. Hence as described in the theoretical analysis section,
methods have been developed where the full signal is analysed as

given in eqs.(4) and (5). For further details see [1]. The work
presented here is for specimens where the two pulses can be

seperated.

I S1121I , /
," v1 /

- 2 12 *I \ C

Time (sec) Fr equency (mKz) FreQutncy 11:)

Fig.2 (a)Two gated pulses of the reflected signal (b)FFT of First
pulse (c) Phase vs frequency for aluminum specimen.

EXPERIMENTAL PROCEDURE The block diagram of the experimental

setup is as shown in fig. 3a. The speci-
mens were fabricated using Magnamite AS4/3502 graphite prepreg
tape made by Hercules Inc. All specimens were of 11"x1"x variable
thickness. The specimens were loaded on Instron Model 1125. The
tests were conducted at a crosshead speed of 0.05 in/min. Edge
replication was done with the specimens under a ncminal load to
open up the transverse cracks.

In order to insure that each transducer was interrogating
the same area, a square window was attached to the circular
transducer as shown in fig.3b. These windows were made of room-
temperature-curing silicone-rubber mixed with PMMA particles. To
ensure that the tests were not affected by the temperature varia-
tions, the bath temperature was controlled to ±0.5 0 C. To elimina-
te the water absorption by microcracks, the edges of the cracked
specimens were coated by strippable lacquer ( Sherwin Williams ).
To avoid the spatial irregularities of the composite (ie matrix
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or fiber rich regions, thickness variations, surface marks etc),

to effect the measurements, tabs were provided on the specimen to

replace it in the water bath to within ±0.001 in., after each

mechanical loading.

.. .....

-"

..... .......... ;; ':

Fig.3(a) Block diagram of the experimental setup.
(b) Window attachment on the transducer.

RESULTS The technique developed here was first applied to an

aluminium sample. Fig.2a shows the first and second gat-
ed pulse for the aluminium sample and the phase vs frequency plot
is shown in fig. 2c. The phase as calculated by the computer is
modulo 21T. :t is converted to a continuous phase by adding 2T
after each cycle completion. Slope of the phase vs frequency

plot gives the group velocity. It was found that for the samples

tested,the group velocity was very close to the phase velocity as

the phase vs freq. plot was essentially a straight line. The wav-

espeed calculated from this Dirt was precise to _O.02x whlen the
specimen was not moved. If the specimen was removed between test-

and replaced the precision is reduced to ±0.1%. The same tests

were repeated with heavily damaged composite specimen and the

precision of the tests was found to be t0.21.

The errors in the measurement or attenuation were larger. 7t

was found that the attenuation could be measurement with a

precision of ±I .O%. All the results are presented w:"h
attenuation in the non-dimensional form ie kz,. Fig. 4 shows the

edge replications of the damage states and the corresponding

attenuation vs frequency curves. At lower frequencies the

attenuation is more sensitive to the damage than at higher freq-

uencies. It is observed that the attenuation gives a very good

measure of the extent of microdamage in the off-axis plies.

Fig.5 shows the variation ol the attenuation as the crack
length increases. Here,the crack length is the measure of the
number of cracks and is the totae length of the cracks in the
field of measurement.

When there are less cracks :n the specimen then there is
some amount of scatter in the attenuation measured, but as the
total crack length increases the measurement becomes steady. For

details of these results see [2].

CONCLUSIONS A new technique for the measurement of wave speed and

attenuation of ultrascnic w.aves has been developed.
To the best of our knowledge this is the first technique tha

gives satisfactory results even for very thin specimen.

L..
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The technique has been applied to fiber-reinforced composite
material specimens. It was found that whereas the wave speed ( or

stiffness) is rather insensitive to transverse cracking, the

through-the-thickness attenuation is a sensitive measure of the
damage state and hence is a potential damage metric.

I~~ e q* 
4c

g sa-44 ~ m J~c

Fig.4 Edge replications of damage state and attenuation vs
frequency plot.

io -Poolroom I

I

Fig.5 Attenuation vs crack length for a graphite/epoxy specimen.
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ABSTRACT

Wavespeed and attenuation, the ultrasonic parameters are
affected by the internal structure or damage of the material.
ACcurately measured ultrasonic parameters, in a composite coupon
are thus an- indicator of the extent of the cumulative damage in
the coupon. A through-transmission water-immersion technique has
been developed for the measurement of the utrasonic parameters.
-ne method utilizes the- Fast Fourier Transforms to convert the
-ime domain signal to the Frequency domain signal. Computers are
Used for the acquisition and analysis of data, for accuracy and
SPeed. This technique can be used to measure the ultrasonic
; rameters of coupons of any thickness and material. The
>O-hnlque presented here has been used to measure damage in
-:ecimen made of' Magnamite AS4/3502 Graphite/Epoxy. it has been
Zcserved that attenuation increase due to microcracks is a
reliable measure of the damage in the composites. To the best of
Zur knowledge, this is the first technique whicr can be used to
nterrogate specimens of any thicknes.

NTRODUCTION

Fiber-Reinforced-Composites have been in use as structural
:embers for a considerable amount of time and various methods are
available for their testing. A detailed review of the methods and
techniques availaole may be'found In (1).

The complex damage state developed due to the loading
-Dechanlcal or thermal) of composite materials, changes the
stiffness and the damping characteristics- of the material. When
an ultrasonic wave Is-passed through the composite, the wavespeed
"nd attenuation measurements give the stifrness and damping or
-he material. Changes rt wavespeed and attenuation are thus a
"easure of the damage in the composites. It is our endeavour to
levelop techniques to measure these' ultrasonic parameters
accurately, repeatably and quickly. We have used computers for
the collection and analysl- of data, with least human
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Intervention, so that the techniques can be automated.

The toneburst method has been the most basic method of the

wavespeed measurement. Sinte broad bursts of the signal(about 5

cycles ) are used in* this method, it cannot be used when the
reflections from the front and back surfaceE of the specimen

interfere. A computerized pulse technique was presented in (2)
for the measurement of wavespeed and attenuation. This method

also depends on the seperation of pulses and though thinner
specimens could be tested, since a single pulse is being used,

the technique failed when the pulses started interfering.

We present here a technique which can be applied to

specimen of any thickness. A pitch-catch signal pulse of a 7 MhZ

transducer is shown in Fig Ia. When a 10 ply composite specimen

Is introduced in the path, the' tbtal signal received is shown In

Fig lb. The technique presented here is capable of calculatinE

wavespeed and attenuation from the signals of Fig 1.

I
. I

Fig. la. Pitch-Catch signal of a 1 YHz transducer, b. Signal when

a 10 ply composite specimen introduced in the path.

The development of the technique and some results from 4 t

application to fiber reinforced composite Graph'te/Epoxy AS4/35C2
laminates with stacking sequences [0,90435 are presented.

THEORETICAL ANALYSIS

Consider a plate of a linear viscoelastic material sand-
wiched between two half-spaces of perfectly elastic caterla's.

Consider also, a finite duration pulse,ray 1,incilen% at
viscoelastic plate as shown in Fig 2.

Pc Co Pc

12

Fig.2 A series of Pulses reflected and transmitted by a plate.
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Due to the mismatch in the acoustic impedence of the tiree

materials, there will be an infinite series of reflected and tra-
-nsmitted pulses. These pulses contain information about the acou-

stic properties'of the viscoelastic material.

Lot the displacement field along the incident ray I be given

by uflnC=f(wt-kx), where '(e)2O for s<O and w and k. are

circular frequency and wavenumber of the first half space. The

total reflected field is the sum of the following rays, with

(h-b-a and s-wt+k 0 x).
u2 -R 1 2 f(s-s 2 ); s2 =2koa

u-=T 2IR 2 T2 1 f(s-s.) ; s.-2k~a+2kh
u 2 R2 ,R ,T 21 f (s-s1 ); s,©-2k~a-4kh

where T .- Transmission coefficient from medium i to 
R 1j-Reflection coefficient from interface of media 1&j
l with wave incident in mediom i

The sum of these rayt is

'SU: ur-R,,f(s-2kca)+T,2 RzT 2 , (Ri2 R:,)m-fss) -kc~~h I
u I R 12112 3 f ( '- );s -2k~am2kh (1)

SM-0
Similarly, the sum of the transmitted field can be written

u '-7 2 R2 3 (R, 2P 2 3 1 f(s-sM ); sm-a(k o-k,) h[(2mn 1)'-k,3 (2)
M-O

:t is to be noted here that k for a viscoelastic plate is a

complex wavenumber.

If we consider a plate immersed in water tnen in the above

5analysis, the two half spaces are identical and the equations (1)

-and (2) reduce to

W ~ = :2 f(s-2ka>a)+TlnRP.: jF'2 1 f( ): .2k aft2ka

u, -'. 7 2  7F.rf(s-s ); s -h[(2m 1)k-k,]

M-O m

Let us define the Fourier Transforms as

F (w) _f(t)e dt

- f,(t)e dt
i( I 2 -itd

from these we get

F (w)
- e 4

2k a F L))

If the incident field is u =f 0 (wt-kx),the reflected field
rIs given by u .Rf,(Ct-k~x-2k~a) where R-(p0c0-pc)/(poc 0 -pc). Let

Iithe reflected signal as sensed by the transducer be f(t), then
V(t)-f 0 (wt-2koa). It can be readily shown that at x-0, the total
ireflected field is given by

Ur(o,t)-,i _FO()dwei t[Plei
2 ka4z e-,'2ka 

2 m k
rn

}

where 2Cm-I) m=I

Let ur (,t)-g(t) and C Cw) De the Fourier transform of

(t), then

* 641
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Since 1+Z Z2 *z+ .... /(-z) for Izj<1
Equation (3) can be wrLtten in thg form

-i~h ~-where L.
- R- Fa

By measuring F*( FF7 of the front surface reflection and G'
(FFT of the total signal with all reflections) the complex valued
k(w)-kj-ik2 can be obtained from eq.(4).

Similarly, from the transmitted field it can be shown that

e-ih(k-k,) O (w)
-- C5)

-Rie - 2 kh T,,T,,F (w)

Here F is the F T of the signal at the receiver whe-
there !- no sample and G is the FFT of the total signal arte
the sample has been Introduced in the path. Detailed derivatico
of these equations is given in (3).

Equation (5) can now be written in the following r-

z Y- . . where Z-e - Ih k

k-k +ik2
k. W/c
k;-coefficient of attenuation

Y-(T,,T,,/R,2 )(F /0 )Z.

-e- ihk,

k.-wavenumber in the elastic metiums.

In (6) both Z and Y are complex.

In the water Immersion case which is the one we a-
going to use for the tests, Z, can be easily calculated 'f tne
wavespeed in water is accurately known. Thc transmission a:
reflection coefficients can be calculated if tne densities cf te
two mediums and longitudinal wavespeeds In them are known.
the wavespeed in the plate is the unknown which we wa,-, t
measure. Hence to overcome this dilemma, an iteration procedure
was folowed where an approximate wavespeed is provided as a.
input to estimate the various reflection and transmissizn
coefficients. Th-e quadratic equation (6) is then solved to zLye
two roots of'Z. The correct root is chosen based on the fact that
as the frequency increases as the phase of Z decreases.
wavespeed is calculated from the phase of Z. This wavespe'ec
then used to re-estimate the reflection and transmiss:z-
coefficients. This iterative procedure converges rapidly to t7.
correct wavespeed. It was estimated that even with an in".4,[
descrepancy of 300'% in wavespeed, the solution converged in fe6-e
than 5 iterations.
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gXpERIMENTAL PROCEDURE

The block diagram of the experimental setup is as shown in

rig 3.

Fig.3 Block diagram of the experimental setup.

The analog signal is collected by the Pulser-Receiver
(panametrics 5052 UA) and is fed into the Digital Oscilloscope
S(Data- 6000). The signal Is digitized in the oscilloscope. The

a 3ignal -processing unit of this oscilloscope then performs' Fast
Fourier Transform on the signal. The useful portion or the

%transformed signal is then acquired by the computer for the
Z.calculation of the wavespeed and the attenuation. In these steps
Aseveral potential sources of errors can affect the results. These

are: (1) Sampling interval, (2) Frequency Resolution and (3)
ITransducer Response. The first factor is the digitizing interval
,of the acquired signal. FFT of a I MHz signal at 10, 2 0,40,100 nS
sampling intervals was'studied. It was observed that at 10;20 or

1r0-nS sampling interval the frequency content of the signal is
.essentially the same. However, at 100 nS sampling interval, the
Rtsignal loses some of its high frequency contents. The useful
.digitizing inter-vals depend on the frequency of t te transducer
Fbeing used. For example for 10 MHz frequency, at 40 nS interval

J Vsome of the high frequency contents are lost. The second factor
;considered was the resolution of the signal in the frequency

domain. A sampling interval of J0 nS or less with a frequency
,,.resolution of 0.05 MHz or less is considered adequate. This
_,factor is also transducer frequency related. The third factor
+__considered was the useful range of the transducer frequency
0 response. It was found that satisfactory measurements can be
40obtailned*over a frequency range given by 25% of the peak response
amplitude. For further details see (4).

. The specimens were fabricated using Magnamite AS4/3502 graphite
k-Eprepreg tape made by Hercules Inc. All specimen were of llx1'"x

size. The specimens were loaded on Instron Model 1125. The
'-tests were conducted at a crosshead speed of 0.05 in/lni.n The

transverse cracks were opened by a nominal load on the specimen
Aand edge replications were taken to keep a record of the cracks.

&To eliminate the water absorption by" the microcracks while
rtesting" by ultrasounds, the edges of the cracked specimens were
Wcoated by Strippable Lacquer (Sharvin Willams).

R.-ESULTS

First of all, the accuracy of h measurement technique
reported here was estimated. The technique was applied to a
eavily damaged composite specimen. This was done to account for
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measurements under the worst conditions of damage. It waS
estimated that the precision of the measurement was "±0.35 for
wavespeed and ±1.5% for attenuation. It is to be noted here that
the accuracy of* the measurement will depend on the accuracy or
the predetermined input parameters viz. the densities of the
water and specimen and the wavespeed of ultrasound in water.

The results presented here are for Gr/Epoxy [0/90], speci-
mens tested by a broad band 5 MHz transducer. In the results
presented, at~enuation k2 has been non-dimensionallzed to k .
Line sketches of the edge replications, where the measurements
were made, are shown in fig 4. The variation of attenuation, as
the applied load in Increased.' is shown In Fig 5. Numbers on the
curves denote the location number on the specimen. The specimen
were surveyed along the lengthy for each load step to Identify any
preferred localization of defects. It was observed that for the
layup tested, the damage was evenly distributed. As is evident
from the edge replications, very few cracks are developed for
stresses upto 35 ksi, and hence the increase In attenuation is
also low. When the stresses were Increased further, multiple
cracks developed and this resulted in a large increase in the
attenuati~n values.

Locacloni

3

3 5.. 11

L I:

5C.3 k.1

Fig 4. Line sketch of the edge replications of a [O/90JS
Or/Epoxy Specimen. L&P denote left & right sides of
the specimen

AP~lied Stress (K-0

Fig 5. Variation of Attenuation as a function of Applied Stress
at 6 difrerent locaticns of the specimen.
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It can be seen from the edge replications that the damage is

evenly distributeo along the specimen and no preffered sites of

damag( were observed. The specimen failed near the grips.

As expected, for the tests conducted, no signIficant

variation in wavespeed was observed. The reason is that in this
configuration of the testing, the Wavefront is perpendicular to
the plane of the crack, or the wave propagation direction is in
the plane of the crack. Hence, the cracks do not change the

'wavespeed appreciably.

CONCLUSIONS

A new technique for the measurement cf wave speed and

:iattenuation of ultrasonic waves has beer. ceveloped. This
-technique is fully computerized and does not need any human
lInterference except the placing and remcving the specimen from

fthe ultrasonic path. To the best of our knowledge this is the
'-first technique that gives satisfactory results for specimen of
!any thickness.

S The technique has been applied to fiber-reinforced composlte

material specimens. It was found that whereas the wave speed ( or
stiffness) is-rather insensitive to transverse cracking, the
tthrough-the-thickness attenuatlon is a sensitive measure of the

;damage state and hence is a potential damage metric.
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ULTRASONIC WDE OF COMPOSITES FOR TRANSVERSE CRACXING
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INTRODUCTION

When fiber-reinforced composites are loaded either mechanically or thermally, a
very complex damage state is developed. The damage consists oF catr~x cracking,
longitidinal cracking, delamination, debonCing, fiber pullout, fiber treaking and
void formation etc. As the damage progresses, the mechanical behavior c" ne
composite changes. This change manifests itself in the form oF reduction in the
overall stiffness and an increase In the damping characteristics Cf the cobposites.
The wavespeed and attenuation of a cechanIcal wave launched in the specimen depend cr.
the stIffness and the damping properties of the materlal, respectively. Tnus, t he
acoustic properties ( wavespeed and attenuation) of the waves passed through tne
composites are affected ry the damage.

,he total damage picture In composites is very complex. One or more cf tne
da-age mechanlsms nentioned above may be present at the same :ocatCn tne
composites. Though It would be an Ideal goal to develop a methoe w ch car. give the
total damage picture, the NDE community has been unable to do so until now. Before
trying to achieve this goal we have to study and unCerstanc eacn camage mode
indivicually. Keeping this in view, in this work we have attempted to Sucy -7e
transverse cracking phenomenon. The reasons behind this choice are: it Is the ros:
common damage mode; it is generally the first step in development of other camaze
nodes; and it Is easy to generate wi hout the Interference of ctner damage oCeS.
Though each type of damage rode will affect the Overall stiffness of the conpcs:tes,
in this study we have usec the layups wnich promote the transverse crack~ng as tne
dominant damage mode.

The conventional method oF measuring the acoustic paraceters is the tcneurs-t
method (12. If the specimens are thin, the reflection from the faces o the specen
interfere. This rencers the toneburst technique useless, as one cannot Identify
individual maximums In the signal. Since the most commonly used laminates in tne
aerospace structures are expected to be rather thin (-2 mm we undertook the tas' of
developing a new technique especially suited for thin laminates. The use CF comp ers
for data collection and analysis make the tecnnique very attractive for automatlcn,
with high degree of accuracy and repeatability.

A computerized pulse technique was presented in [2) for the measurement cf the
acousCic parameters. The digitized signal In time dotain is transformed to frequency

P domain by the use of Fast Fourier Transforms (FFT). The acoustic parameters are then
computed from the phase shI f and loss of amplitude between two pulses in the
reflected signal . This method could be used for specimen where the pulses could be
separated. The toneburst method requires about 10 cycles of signal, whereas the
technique developed by us required only one cycle, hence, though separation oF
signals was required In both the methods, thinner samples can be Interrogated witn
the new technique.

An extension of this technique was presented in Ef3 where the separation of
pulses is not required. Hence this technique could be appliec to spec:mvn of any
thickness. This technique could be applied to both reflection or th-cugh-transmisson
methods. in the reflection method precise replacement oF tne spezinen is very
critical for the correct measurement. The through-transmission method coes not suffer
from this restriction and hence was used by us. A picn-catch signal from a 1 YHz
transducer is shown In Fig.Ia. When a 10 ply compcsite specimen is Introduced in the
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path, the total signal received is shown in Fig.lb. This technique is capable of
calculating the acoustic parameters from these signals.

The above mentioned two techniques have been applied to the analysis of
transverse cracking. We present here the salient features of the two techniques for
completeness. Someresults are then presented from the application of the techniques
to Graphite/Epoxy AS/3502 laminates. Interested reader is referred to [4] for
further details. The results show that although the through-the-thickness measuirement
of attenuation Is very sensitive to transverse cracks, wavespeed is not. A plausible
explanation is that in this configuration of tests, the waves are moving parallel to
the plane or the cracks. When the waves move normal to the cracks we should expect a
larger reduction in the wavespeed.

In the Lamb wave mode of wave motion in a plate, the waves move in the plane of
the plate, and hence are normal to the transverse cracks. We have tested the
specimens with transverse cracks using Lamb waves. Results show that the changes In
wavespeed and hence the changes in longitudinal stiffness of the specimen can best be
detected by the use of Lamb waves.

THEORETICAL ANAL!SIS

Consider an ultrasonic pulse in water, incident upon a composite plate. Thrs
pulse will suffer successive reflections at the two interfaces, these reflections are
shown in Fig.2. It has been shown in [2) that

w/Fe - sT e F e Txp(-2kh) th)

where C is the Fourier Transform of the pulse 6.
F if the Fourier Transform of the pulse 2.

-. is the Transmission Coeff. from water into specimen.
T s the Transmission Coeff. fro specimen Into water.

k-k 1 .l:. is the Complex Wavenumber in the specimen.

K. is the attenuation coefficient.
w is the circular frequency of the input signal.
c Is the wavespeed in the specimen,
h is the specimen thickness.

Tnis equation has been used ;c evelop the techn que where s nal ,puses 2 and i
can be separated. Tre phase of C /f -I gives the wavespeec and iO£] (0 P- )/TL:T:
gives the attenuation for the ultrasontc waves In the specens.

:n the second technique pulses 4,12 cf Fig. 2, cannot be separated :t has been
shown in [3) that

Z2: Y-C,-O. (2)

where C-txp(-ihk)
b-(T,.T 2 3I/R: (F /0 )I,
4.1-Exp(-ihk,)

k.-wavenumber In medium I
C . -2 I P
R,-eflecticn coefficient in medium 2 from the 2/1 interface.

are same as defined earlier for eon.i

Note that in this equation both Z and Y are complex. This complex quadratic
equation is solved at each point of the waveform. The correct root s chosen based on
the fact that as the frequency increases, the phase of Z decreases. The wavespeeC is
calculated from the phase of Z. The reflection and the transmission coefficients are
dependent on the wavespeed in the specimen, which is precisely what we want to
measure. This dilemma was resolved by an iterative procerure. Wavespeed for the
undamaged specimen is used to estimate the reflection and transmission coefficients
and a value of wavespeed is calculated from eqn. (2). This wavespeed is used as the
next guess in the estimate of the coefficients. It was found that even with an
initial error of 30 % in wavespeed, the solution converged in less than 5 iterations.

For the Lamb wave tests we have used on!y very low frecuencies i.e. Iz S
wavelengths. The reason is that when the wavelength is large compared to t.e
...ckness cf tne specimens, a few Lamb modes are generated and so are easy 'o

100"fy. At tre low frecenctes uset, only tne %ndarental symmetric ant an:;-
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symmetric modes are excited. We have used the symmetric mode of Lamb waves where the
particle displacement is uniform across the plate.

EXPERIMENTAL PROCEDURE

The block diagram of the experimental setup is shown in Fig.3. The pulse
generator triggers the signal generator which produces a single cycle of sinusoical
signal. This pulse is amplified by the power amplifier and the signal Is fec into the
ultrasonic transducr. The transmitter launches a mechanical wave in water. This wave
travels through the specimen and is received by the receiving transducer. The signal
from tn- receiver is amplified by the signal amplifier and red into the Digitizing
Oscilloscope. The analog signal is digitized and stored In the oscilloscope. The
built-in signal processor of the oscilloscope provides the computer with the FPT of
the signal. The ultrasonic parameter; are then calculated by the computer.

For the Lamb wave application, a trigger pulse. is fed Into the signal generator
which, in the gated mode, produces a toneburst of signal of about 10 cycles. Rest or
the circuit description remains same as before. As shown In the block diagram, the
transducers are mounted on precisely controlled travelling mechanisms. The specimen
is mounted on a turntable. The vernier of the turntable is graduated to 0.10
rotation. This type of arrangement is required so that when the specimen is rotated,.
the transducers are suitably moved to ensure that the same area of the specizen isInterrogated throughout the test. The procedure followed for these tests is as
follows. Lamb Waves are generated In the specimen by launcnlng a toneburst of
longitudinal waves through the water. The specimen is rotated and the signal received
by the receiving transducer is recorded. Critical Lamb angles are ldenttfleC by the
sharp peaks in the received signal. The Lamb angles are confirmed by a very simple
test. An elementary calculation which, for brevity, Is omitted here, shows that If
the receiving transducer Is moved in a straight line parallel to the zero degree
orientation of the specimen, there should be no change in the arrival time of the
signal. Since the wave travels a longer distance In the specimen the attenuation can
be measured. From the angle c the specimen the wavespeed is calculatet ty the
Snell's law;

Sin( 6)/V - Sin(n/2)/C C>

where E is the angle of incidence.

V W is the wavespeed in water.
C Is the wavespeed In the specimen.

The longitud-rna! stiffness is calculated from the relct6cn E-nl' nere ps the
density of the specimen, £ is the longitudinal stiffness and I the Lanb wavespeed. ;sthe damage is induced in the specimen, cecrease in the stiffness cf the spec;n enresults in an increase in the Lamb anle.

RESULTS AND DISCUSSION

Firzt we present some results from the application of the technique where
separation of pulses was possible. in all the results presented here w. have used the
non-dimensIonal form of attenuation(kt) where I is the wavelength of the signal. the
variation of attenuation as the load is increased to induce the transverse cracks Issiown in Fig.4 for the specimen of [0,O.O 2 2I) layup. It is observed that for all
damage states the attenuation decreases wiLt an increase in the frequency. themaximum variation In attenuation is observed at a frequency of 2.25 MHz. This figure
also shows a very cramatic Increase in the attenuation as the damage is Induced inthe specimen. The variation of attenuation, at three locations on the specimen, as
the total crack length in the field of observation Increases, is shown In Fig.5. In
the early stages of damage when there are a few cracks, some scatter in the
attenuation is observed. As more cracks are generated, the attenuation varlation
becomes steady. The reason is that when there are a few cracks then their location,
in the field or the transducer, is critical. A crack In the center of the transducer
field will scatter the waves much more than the crack at the edge of the field, But
when there are a number of cracks then their effect is averaged out and a fairtv
uniform response is obtained.

Further tests were performed on a CO/9.) specimen at 5 Mhz. the pu-;pse of
these tests was twofold. First, these Ieing t5in specimen, were tested to theCk thesecond technique cevelopec by is, where the various reflections need not teseparated. Secondly, we were Interested In studyIng that a! tne transverse cracks are
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developed, Is there any preferred site of damage accumulation and if so, could it be
detected ultrasonically. These tests were performed on several specimens. Results
from one specimen are presented In Fig.6. The variation of attenuation with the
applied loads is shown at six different location on the specimen. Initially there are
some preferred site: of damage, but as the damage increases It is evenly distributed
all over the specimen. In the specimens tested the failure always took place at the
grips and hence no precursor of final failure could be detected.

Now, when a damaged specimen Is unloaded some of the transverse cracks may be
partially closed. Such closure would tend to decrease the attenuation. Our objective
In the next set of tests was to experimentally determine whether or not the crackL
are partially closed. The through-the-thickness attenuation was monitored as the load
on the specimen was increased. The maximum applied stress was about 15i of the
ultimate strength and was sufficiently low so as not to cause any additional
cracking. The main problem in these tests was to prevent water from entering the
open cracks. A thin coating of a rubbery adhesive was used to seal the edges.
Presented in Fig.7 is the variation in the attenuation as two cycles of load are
applied to open the cracks and Fig.8 snows the wavespeed variation during the same
loading. The attenuation increases as the cracks open and follow essentially the same
path over the two cycles of loading and unloading. The scatter bounds of 1.0 : In
attenuation and 0.5 i in wavespeed measurement are shown in the figures. This snows
that even though the cracks open, as is evident from the increase in attenuation,
there is no measurable change in wavespeed.

Now we shift our attention to the testing of the transverse cracks by Lamb
waves. All the tests have been conducted on [0/91,) and [0/90 I specimens at a
frequency of 0.5 ME:. Decrease in stiffness as the irack length Inthe interrogation
area increases is shown in Fig.9. h ste.,l zecreaw in the stiffcess I atr~ r. r
as the transverse cracks increase. Variation of attenuation as the damage increases
is shown in Fig.10. As expected, attenuation increases tonotonlcally with damage.
Since attenuation can be measured with an accuracy of I 10i, the four-fold increase
in attenuation observed In these tests is quite appreciable.

CONCLUSIONS

The effect of transverse cracks cn the acoustic parameters cepencs on the
direction of the wave propagation relative to the cracks. :n tre case of
through-the-thickness measurecents where the wave propagation directlon is In the
plane of the cracks, the attenuation measurement is sensitive to cagme while onewavespeed Is -ot. Conversely, when the waves travel normal to the cracks, as in the
case of Lamb waves then, for the configuration tested, both the and the at!-.waicn
are sensitive to cracks.
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NONDESTRUCTIVE EVALUATION OF COMPOSITE
MATERIAL USING ULTRASOUND

V. K. Kinra and V. Dayal

Aerospace Engineering Department and
Mechanics and Materials Center Texas A&M University
College Station, TX 7843

ABSTRACT

Fiber-reinforced composites are finding an increasing use in th- aero-
space industry. Initially the FRP components constituted only the non-
critical components of the structure. Now the composites are being used in
the primary load bearing members. After undergoing a certain amount of
usage, the mechanical, thermal and environmental loading produces a complex
damage state which includes transverse cracks, longitudinal splits, delamina-
tions, debonding, etc. Almost all the NDT techniques are geared towards the
estimation of the extent of damage to the structure. From these results it is
exoected that the damage modelers will be able to estimate -he residua.
stiffness and residual strenc.th and life of the structure. We have us.
ultrasonic waves to study the changes in stiffness of the structure as the
damage progresses. This work will help the damage modelers in furthering
their analysis.

The ultrasonic waves passing through a composite specirmen interact wvith
the various defects, and in turn, these defects affect t.'e basic ultrasonic
pIrameters; wavespeed and attenuation. It is well known that wavespeec 's
directly related to the stiffness, and attenuation is a measure of the damr-
ing characteristics of the material. A very important stiffness comonen, is
the in-plane stiffness of the plate. Hence, we propagate the waves n the
plane of the plate to measure the in-plane stiffness. The mode of propaga-
tion is called the Lamb wave or Plate wave mode. The plate is immerse: i. a
fluid and the Lamb waves leaking into the fluid Pre called the leaky Lanml
waves. These leaky waves have been used to 6etermine the wav...... an:
attenuation of the Lamb waves traveling in the plate.

Damage is gradually introduced in the composite plate. In the work
presented here, we have limited the mode of damage to transverse cracks c..v.
The changes in !he wavespeed and attenuation are measured as a function of
damage. We present here some results from the tests of cross-py and angle-
ply graphite/epoxy laminates. The reduction in the ir:-plane stiffness and an

yincrease in the adtenuation is observed as the numbr- o' transverse cracks
ncr ease.
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INTRODUCTION

The growth of damage in composite materials is very different from that
in homogeneous materials. In homogeneous materials once the damage is initi-
ated, any further loading tends to increase the existing damage. On the
other hand, in composites the damage relieves the stresses in its vicinity
such that the next cracking takes place at some other location. It is only
when the microcracks become densely populated that they initiate larger
damage such as interior delaminations. The study of damage growth in cross-
ply laminates due to cyclic loading1 has shown that first the transverse
cracks appear in the 90' -plies. These cracks are restrained in their growth
and hence further loading results in the axial split in the 0' -plies due to
the Poisson's effect. The intersection of the transverse cracks ard the
longitudinal splits becomes tne nucleation site for the interior delaminatio:.
between the plies.

When an ultrasonic wave is passed through a damaged composite, the inter-
action between the wave and the damage can affect the wave in two ways: (1)
Damage will, in general, reduce stiffness and since wavespeed is directly
proportional to the square-root of stiffness, damage will reduce the waves-
peed, and (2) The attenuation will increase because the crack-wave interac-
tion results in an incoherent scattering of the waves. Thus the effect of
damage on the overall behavior of the composite can be studied by measuring
the acoustic parameters of the ultrasound passed through the specimen.

We have developed two new techniques 2 for the measurement of acoustic
parameters in tin iaminates which are expected to be used in aerospace
structures. With the first of these techniques, one is able to measure Zhe
acoustic parameters when the pulses reflected from two surfaces of a pla' e
specimen can be separated in time docmain. With the second tecnmique cne ca.r.
make the measurements even when the pulses are inseparable. Here, o :,e -.- '
In time domain is transferred to the frecuency domain by the use of fos"
Fourier transforms (FFT). The data in the frequencv domain is us- r a.

Fi.1. WVave ProDrci Peiaive T-ansve-se Cr-ack Plane.
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algorithm developed by us to measure the complex-valued wavenumber k = ki +
k 2 , where k, = w/c, W) is the circular frequency of the signal used, c is the
phase velocity and k2 is the attenuation coefficient. Figure la shows that
in this mode of wave motion the wave travels in the plane of the crack and,
hence, there is a weak interaction between the waves and the crack. Results
show that although the changes in attenuation are substantial, the effect on
wavespeed is immeasurably small.

Figure lb shows the Lamb wave mode where the wave travels normal to the
transverse cracks. Here the interaction between the wave and the crack is
stronger, and therefore, a larger effect on the acoustic parameters was
observed. In this mode of wave motion, the longitudinal stiffness of the
plate determines the wavespeed. Hence, the effert of the transverse cracks on
the longitudinal in-plane stiffness of the composite laminates could be
studied. We present here some results from the testing of the composite
laminates with transverse cracks by the Lamb wave technique. The results
show that both the wavespeed and the attenuation are significanty affecteC'
by the transverse cracks.

THEORY

For the Lamb wave tests we have used the fundamental svmmetric moce c-
%wave propagation. The reason behind this choice is that in this moje toe
wave travels with a plane wavefront. The relhTion between the materia.
properties and wavespeed in the fundamental symnmetric mode is

2u= EiT =(!: 2 ' ) i

where CL is the Lamb wavespeed, E1 is the in-plane moduus, t, is " ,,
Poisson's ratio, and t' i is the minor Poisson's ratio.

For the composites used by us viz= 0.25 and v,= 0.01S. Thus
and to a first approximation eq. (1) is:

CL2= E!/,

The relation between the angle of incidence cf the wave on tne plate,
and the wavespeed (C) of the Lamb wave is gnvened by the Sne.:.s L-w:

sin( i)/vw = sin '7/2)/Cl

where V, is the wavespeed in water.

EXPERIMENTAL SETUP

The block diagram of the experimental setup ,s shown in Fig. 2. Thy
specimen, the transmitter and the receiver are immersed in the water ;nat.
The specimen is mounted on a turn table and can be rotated about a vertica"
axis in steps of 0.10. This rotation is required to set the specimen for the
through-the-thickness and Lamb wave meas:re,,en.s. The transd-crs are
mounted on precision traveling mechanisms. In the throug.--the-thickness
measurements the specimen is normal to the incident wave and the two trars-
ducers are in The sam- line.

t, . sa e line
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Fig. 2. Block Diagram of the Experimental Setup.

The pulse generator triggers the signal generator which produces a single
cycle of sinusoidal wave for tihrough-the-thickness measurements and a tone
burst for the Lamb wave measurements. This signal is amplified by the power
amplifier and the signal is fed into the wide band transmitting transducer.
The wave launched into the water travels through the specimen and sensed by
the receiving transducer. The signal from the receiver is amplified by the
signal amplifier and fed into the digitizing oscilloscope (Data 6000 by Data
Precision). The analog signal is digitized and stored in the oscilloscop..
The built-in signal processor of this oscilloscope provides the computer wt
the amplitude and location of a characteristic point of the toneburst signal
e.g. a maximum of a sine wave. The signal amplitude at ciffeen angles o
incidence is recorded, and critical Lamb angle is identified by the peak :
the received signal. A very simple test is sufficient to checl" for the
correct Lamb angle. It can be shown by an elementary calculation that if te
receiver is moved in a straight line perpendicular to the line joining the
two transducers then there should be no change in the arrival time cf the
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signal at the receiver provided the specimen is orien*ed a, the correct Lamb~
angle. WVhen the tranrsducer is moved for this check- the wave spends more

~time in the specimen and less time in wvater and hence the attenuation can be
measured.

All the specimes for which the results arepDrescnt, he-,- a-e made Of
A5S4/'"502 gr.aphite/epoxy laminates. The specimens are 12" x I" coupons.

I - I 3 s

RESULTS AND DISCUSSIONS

Now we present somne results-from. the Testing of [0,;903] s and [0'90,].
laminates by the Lamb wave method when transverse cracks are intro/uced, Th
cracks are generated in these specimens by displa-cementk contro"!--"d mor-3otor- .C
loading at a displacement rate of .02"/rain.

We have carried out a theoretical analysis of Lamb wave pr.opa.-a,,ion "M a
symmetrical balanced composite laminate 4 . T]he dispersion cuirves reproduced
here are from that work. Fig. 3shows the dispersion curve for the [0, j
soecimen. Phase velocity of the Lamb wvave is plotted against the product o-f
signal frequency and d, where 2d is the plate thickness. The symmet ric and
antisymmetric modes are shown in solid and discontinuous lines, .esp • ' v.
The frequency at which the tests were performed (0.5 Mt-z), is indicated va
circle; s o represents the 'fundamental symrmet ric mode. The normalized
reduction in stiffness as the number of cracks increases in the tranisducer
field are shown in Fig. 4. The stiffness is n--rma.,:zed with r¢t tto *,he
stiffness of t-he virgin specimen (i.e. no damage). There is a stead),
decrease in the stiffness and the overall reduction is about 12%-Z. The
increase in the attenuation for this specimen is shown in Fig. 5. A four-
fold increase in attenuation can be observed in this test. Fig-ure 6 shows
the dispersion curve for [0/90,] , lam inate anj the tests w er e conducted at 14
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the frequency indicated by the circled point. The line diagram of the sza~e
of damage is shown in Fig. 7. The location of the transmitter (TR) and the
receiver (R) ar , shown in the figure. The reduction in the stiffness of t-Is
laminate when the transverse cracks are introduced, is shown in Fig. 7.
Observe that going from the damage state 3 to 4 though there was a s .... a.-
tial increase in the number of cracks in the specimen, the number of cracks
in the local region interrogated by the transducer did not increase and hence
the changes in the stiffness of the specimnen were not observed. This is very
reassuring for it demonstrates that our measurement reflects local chnanges 1n
the stiffness. For this specimen the reduction in stiffness of about 305 was
observed. The increase in the attenuation is shown in Fig. 8 which shows
almost a six fold increase in attenuation.

.5 .5 2 2.5

Fig. 6. Dispersion Curve for [0/9Q4], Gr/Ep Laminate.
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In the second technique, Lamb waves are propagated along the ienih of the
specimen. Here, the crack-wave interaction is the strongest; both the waves-
peed and the attenuation change appreciably with damage. The Lamb wave
method, therefore, is a much more effective method for the detection of
transverse cracks.
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TABLE I-List of the personnel taking part i,, the interlaborator>y testing programn and their
laboratories or company nuames. and of the trade Piarnes or ucronvnis (where available) for the

apparatus used and the phYsical principle of operation.

Trade Name
Laboratory Personnel or Acronym Physical Principle

1. Inco J. S. Smith Free-free Beam
A1 l S (F)
International

2. Pitney Y. T. Chen Free-free Beam
Bo'~es R. R. Phillips (F)

P. Ttrranova

3. J. W. J. W. Lemnmens Grindo-Sonic Impulse
Lemnmens Excitation
Electronika (F)

4 National G. V. Blessing Velocitr
Bureau of Measurements of
Standards Ultrasonic Wase
INBS) Pulses

(T)

5Texas A&M A. Wolfenden PUCOT PicZoclec!.;c
Uiniversity N1. R. Harmnouche i ezoclectr ic ltrasonic

Ultrasonic Oscillation
Composite IF)

Oscillator
Technique)

t,. Texas .A&M V K. Kinra Ultrasonic
linisersits V. Dasal Pulse Specttu-

3l,1M P. Ntahmoodi Free-!ree Beami
Company R. J. Wa n n

S. Texas A&NI.% A. Wolfenden Nloidul- R NlaQ~eticalkv
University NI. R. Harmouche Excited Resonance

(F)

F: Denotes that the apparatus s designed to measurt frequency of the specimten.
T: Denotes that the apparatus s designed to measurc the transit time for ultrasonic pu. sex -

P: Denites that -he apparatus is designed for ultrasolic pulse spectroscoos.

,hmagnetic material. des~gnated Alloy B). 10 The chemical corn- Thtus the methods tha: are concei neclv sish measurements of transit
positions. thermomechanical treatments, and sizes of the speci- tinie t (and hence velocity) of ultrasontic pulses over a knownr dis-
mens of Alloys A and B are given in Table 2. The specimen sites tantce L in an elastic mediu-n apply Eq 1 directly iv' = L 0l. assum-
reflect to a great extent the optimum or convenient sizes pertinent ing that p is known or can he measured also. In the czsc of the
to the particular measuring techniques at the various laboratories, methods that utilize me-asurements of resonant frequency of Stand-
To examine the possibility that the specimens were not isotropic, ing or decaying elastic xave, in an elastic nmedium a modified form

.' 5ra difrctin olefiures (powder patterns) were obtained f:ar ofEq I is applied:
filings from the specimens and for pieces of the specimens. For Ia-
conel alloy 600 (Alloy A), no significant texture effects were de-E- v

tected. However, for Incoloy 11loy 907 (Alloy B), small traces of
31 1) and (222) textures were found. O (2)

Experimental Procedures wheref is the resonant frextuencyl and Xs is the wav-elength. The spe-
cific eeometrical details of the specttx'en usually determine N. For

A-\i .i.perimental methods of nmeasuring dynanmic You ng's mod- exan'ple. for a uniform heam resonating in tts fundamental longi-
ILtIs E use, in soime form or other, the basic .vave equation for the tudinal mode, Ithe wav-elength is twice the leagth L of the beam,

,ropagation of a longitudinal elastic wave it, an ciastic medium: Therefore Eq 2 becomes

E = pv1il1
E 41)Cf- (3)

,,here p is the mass density of thermedium and v is the wave speed.
"'lnconel and Incoloy are trademarks for products of the Inco family of A~gain, in the frequency methods p nmust be known or measured.

omaes(Inco Alloys International,.Incl. All but ornc s the experimental procedures used in the Interlabora-
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TABLE 2-ChemjiCal comwitions. thertnotnechonical trea,,nients. and sizes of the
speciniens qf Al/onv A and B.

Allov A Allov B
(Intonel Alloy 600) (lncolo., AlloY 907)

Composition fwt%)
Ni74.91 37.46

Cr 15.48
Fe &others balance balance
C 0.08 0.01
Co ... 14.38

Nb ... 4-71
Ti . 1.4ti

Treatment
Cold drawn Hot rolled
Mill annealed"
31. 7 5 rm 17.78 by 101.6nm
l 1.25 in.) diameter (0.7 by 4 in.

1 1l

Specimen Sizes
tF lund (.5mm (.$in.; diameter b N 79.38 mm (3.125 i. long

Strip 2.03 mim (0.080 in.) by t).35 mrm (0.2; in.) b.% l0(ybS: m
(4A QQ in.)

Special #1 25.4 mm (1.000 in.) diameter
bi 101.6mm111 (4.000 in.)

Special 02 $0.8 b, 50.8 b,- 105 trm

12 b\ 2 by 0.750 it,.)
25I.4 mmr diameter b% 19.0$ im
(I in. diameter b-, 1)75'W.

.in the range 960 to l03S1,C.

tot's Testing Program fell into these Iss , basic categories fo.- dctcr- ~ ~ .i

mining dynamic Young's modulus. The third basic tch-niquc,
newly developed, is ultrasonic pulse spectroscopy. The techniq'ues A~ a e
will be described in this section of the paper in the follownc se-'_-~j-0 nr~

quence: free-free beam. impulse excitatioan, wave velocity measure-
ments. ultrasonic pulse spectroscopy. pit zoelectric ultrasonic oscil-
lation. and magnetically excited resonar cc. vy

Free-f'-ee Beamn Technique

Three of the laboratories mentioned in Table 1 incorporated the
free-free beam test method 11-31. While the details of the appa-
ratus at the three locations vary, the basic principle of operation is
the same. For brevity. an apparatus wtll be described w hich maybhe i- c'eE
regarded as typical for the technique.

The test method is patterned after the technique of Spinner and -.------

Tefft [2] of the National Bureau of Standards. F~gure I shows sche---
matically the instrumentation and the test configuration. The rec-
tangular or cylindrical specimen is suspended near its nodal points
by pure silk or cotton-covered polyester thread. The nodal points ,-

for beams of uniform section in a free-free suspension are at dis-
tances from the free ends of approximately 022L and 0.78L []
For the rectangular specimen the cotton threa-ds are positioned at
opposite sides as indicated by Spinner and Tefft [21 and suspendedL
from Astatic X 26 crystal cutters used as both drive and pickup
transducers. This configuration of opposite side suspension excitcs FUN±JsE T4'7A.L I' l-E5RE
both the flexural and torsional msodes of vibration. Cy'Nlindrical FIG. I -Schematic, diagrain ofI M( ,istrumnen tatt s use1d it: theieet e
specimens are suspended in a similar manner except for the obvi- h, * t m nethodj and ofthe test roiij,i at ion. Tii specim~ien is S usprnided
ous off-setting of th. suspension positions. Alternatively, the better i? o~r ne-ar the ni-idal points.
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string suspension system known as the loop method may be used isolate the harmonics and the fundamental resonant frequency
from the spectrum of noise. nd to measure the period correspond-

The sine wave signal from a function generator is fed to a power ing to the fundamental frequency. The result is displayed in digital
amplifier and then to the driver transducer. The pickup transducer form. A block diagram for the method is shown in Fig. 2.
has a loX gain preamplifier. The signal from the pickup is ana- The specimen is supported preferably at the nodes of the desired
]%zed on a suitable analyzer, which is configured in a peak averag- vibrational mode. By positionin g correctly the location of the excit-
:ng mode using exponential averaging. The function generator is ing impulse, each mode can be induced easily. Whatever the mode,
suept manually through the frequency range of interest while the the instrument will identify the fundamental resonant frequency of
output signal is examined. The fundamental frequency is quite the vibration. Very little exciting energy is required, even for very
easily determined in this manner, large specimens, because the measurement is performed at a verv

Physical measurements such as length. width, diameter, or low strain amplitude. Hence only a very light tap is sufficient to
:hickness ate measured with a machinist's caliper. The density of initiate the measurement.
:he specimen is determined using mass and volume calculated The most versatile means of detecting the vibrational motion is
"rom the measured dimensions. proviced by a hand-held piezoelectric probe. It is used to analyze

The equations used for calculating Young's modulus are 141 signals from about 20 Hz to 80 kHz in frequency. Acoustic. opti-
cal. or electromagnetic detectors can be used for specialized pur-

Cylindrical: E - 64rt-L 4 p,'Akd-r (4) poses, such as testing materials at high temperatures. With the
fundamental resonant frequency thus obtained and the density de-

Rectangular: E 48't L'p, .4 -h (5) termined by the Archimedes method. the moduli and Poisson's ra-
tio can be calculated for regular shaped specimens using well-

here known enuations 121.

= fundamental frequency,
L = free length, Velcit' 

f 
Ultrasonic Wave Pulses

o = density, This technique is one of the better knowN methods for measur-
2 = diameter, ing dynamic moduli in materials. A brief account of the theory be
i = thickness, and hind the technique and of the experimental arrangement is eiven.
.4= constant depending on the shape of the specimen. For ultrasonic wavelengths less than the dimensions of the speci.

mens. two normal modes of wave propagation in isotropic media

',,:Pulse Excitarion Technique prevail. They are the longitudinal and shear modes, with respect:ve
velocities VL and V, (see, for example. Refs 6 and . and ASTV h

The test method entails (a) the excitation of the test specimen by 494). Longitudinal " ayes. sometimes refer,,d to as comrn ressnal
-*.ans of a light mechanical impulse a tap) and (b) the analysis of waves, alternately compress and dilate the m;.teral latice 6.e..

resultant transient vibration. An eltetronic circuit is used to generate compressivc and tensile strains) as tney pass by. The re-

FIG. 2-Block dw-ram of t ,mpulse e rcoaton techique.

Dufe .ra 4 -DI m m mmA-• ]|Vmm m n •
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suiting particle motion of the material is parallel to the direction of transducer. The pulse-echo-overlap technique is convenient for
wave propagation. Shear waves. on the other hand, generate parti- making precise transit time measurements 18]. With this tech-
cle displacements perpendicular to the propagation direction. nique, at least two echoes (with a single transducer) are needed to
causing the material lattice to shear as the waves pass bv. provide an overlap of successive echoes on the oscilloscope by

From these two wave speeds and the density o, all the elastic pa- means of time-delaving circuitry, fron which the transit times in
rameters of the material can be calculated: the Young's. bulk, and the specimen are determined.
shear moduli, and Poissoi s ratio (P.,.). Their relationships are The ultrasonic velocity measurements are nide at frequecies
given by ranping from 5 to 15 MHz for the specimen dimensions in these

tests, with the higher frequencies being used for shorter path
Young's modulus = p\;2(3V2, - 4' 2)/(!L 2 - V1) (6) lengths. All measurements are made at a nominal room tempera-

ture of 21 'C. Figure 3 illustrates the principal components used for
Bulk modulus = p(\' - 14 3) .') (7) a majorit\ of the measurements. (Some data are taken using a

through-transmission technique wherein a second transducer at-
Shear modulus = p\' (8) tached to tht opposite face of the specimen receives the ultrasonic

pulse.) A pulser/receiver unit transmits a very short (less than 0.1
P.R. =(V' - \'i '(" ' 2'2) (9) jps spike voltage to a transducer, generating a broad-band ultra-

sonic wave of short duration-less than 1.0 ps. for example. a: 5
Anisotrop5 and inhom ogeneit in the specimen may be conve- MHz. Atypicalbroad-band wave shape is illustrated in Ftc. 3. For
niently e,'auated ultrasonically. If a specimen is inhomogeneous. the rod sample, it should be noted that the errors in determining
different wave speeds will be observed at different positions in the wave speed can be very significant due to sidesvall reflections using
specimen: if the specimen is anisotropic. different vave speeds will the pulse-echo-overlap (or through transmission) technique !Lj.
be observed for different propagation directions in the specimen. Alternatively. the transducer may be driven by" a multi-cycle siu-
Furthermore. shear waves maw be used to evaluate anisotrop' in oidal voltage burst, usually at the transducer's resonant frequency.
the specimen by propagating them in the same direction and rotat- which results in a relatively narro\ band ultrasonic wave packet of
ing the transducer's particle displacement (polarization) vector, longer duration-several microseconds, for example, at 5 MHz.

The was-e speed V in the specimen is determined by measuring The transducer converts the excitation into a mechanical oscilla-

the transit time t of an ultrasonic pulse over a known path L in the tion or sound wave which is coupled into the specimen to propagate
specimen. and by calculating V = L,,t. It is important to note that at the sound velocity. The coupling is significantly enhanced by us,-
the distir; tion between phase and group velocities becomes irrele- of a thin laver (much less than an ultrasonic \yavelengthi of liquIC
van: for non-dispersive media, such as the specimens tested here. or elastomer material. (Other coupling techniques exist %khich :o
This is pointed out empirically in the followeing section. The tieces- not require direct mechz.nical contact of transducer to spcirmen
sary measurements to differentiate b,:;ccn group and phat val- 171.) Commercially available transducers hav, a ca,,:ng :Iat iouses

ues were not made. The measurement techniques applied here a piezoelectric element and often at- impedance matchinc circuit,
could span the difference berswecn the two values. In any event, the which are designed for convenient electrical atachmen ,c-
difference between the values is probably less than the measure- pulser~receiver via coaxial cable and standard connectors.", The p-
ment precision quoted for the me:al samples studied: one part in a ezoelectric elements of the transducers used in this work rane-
thousand, or 0.1 7c. I vpical". L is twice sonic usable dimension in from 4 to 13 mm din meter.
the specimen, such as the cylinder bar length or the thickness of a After entering the specimen, the ultrasonic pulse echoes bac:k
flat strip. The factor of two derives from the round-trip distance for and forth between the faces of the speci:ner. %, hiie cunst:i:t. C-
the pulse when making pulse-ec)o measurements usine a single cavine in amplitude due to scatterne. .tturp:to., ito cvut,.tti

r , -

841P SAMPLE

FIG. 3-Uh.so, lyocit ir -,,urnt it-i,, witS Jr-'! m,,trtm 'I trutranmh,(in-; , .t' ..... It

transitl rite f th" uihr-usontc pulse is mcla-sj,, d b. tih', "1ISr i-rh i t , t,' m h , ,-ii
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interface losses. Each time the wave pulse ii incident at the trans- formity of the specimen and its porosity can be estimated. In
ducer/specimen interface, a portion of the elastic wave energy is composite materials we are able to assess damage due to mechani-
converted into an electrical signal by the transducer. This received cal and thermal loading. Brief accounts of the theory behind the
signal is then amplified and displayed on an oscilloscope !o that technique, the procedure, and the results follow.
the transit time measurements can be made. Electronic techniques If the pulses can be separated in the time domaiii the following
exist to automate the measurements with direct computer control. equation is obtained 113] for the water immersion reflection case:
The accuracy of these measurements depends on the dimensions of
the specimen (path length, end-face parallelism. etc.). the particu- G*/F* = I + T1 2T21 exp(-2kh) (10)
lar ultrasonic coupling technique. and the signal-to-noise ratio.
Typically, the accuracy for these transit time measurements is ± and for the direct contact reflection case:
0.1% or better. The accuracy could be increased (if desired) by
taking into account (a) the effects of beam spreading (diffraction) G*/F* = I + R', exp(-i2kh) (I )
and (b) the small but finite effect of the bond layer thickness on the
phase shift upon each reflection from the specimen-transducer where
boundary, as noted elsewhere [10.111. However, in discussing
these potentially high accuracies, the limitations imposed by the GO = FFT of two pulses,

inhonogeneitv and anisotropy of the specimens should be kept in F = FFT of the first pulse.

mind. Indeed, in Specimen 2.3 (Incolov alloy 907) a noticeable an- T,, = transmission coefficient from medium i toj.

isotropy of about 10% for the shear modulus was detected at both R, = reflection coefficient when the wave travelling in medium i

Positions I and 2 (see Fig. 3. bar sample). This anisotropy effect on reflects from i/i interface.

the modulus most likely arises from the texture observed in Alloy B h = specimen thickness.

(see Specimens section). The densities of the specimens for this k = k1 + ik2 is the complex wavenumber.
study were determined by the Archimedes method, by which the k,= wc is the wavenumber.

density of the specimen is measured relative to that of distilled wa- C = circular frequency.
ter. The latter density is known from published tables. k = attenuation.

Ultrasonic Pulse Spectroscopy.for the Measurement of Phase Substituting k = k, + ik2 into Eqs 10 and I I and comparing the

Veloci v and Attenuation real and imaginary parts of the two sides, we obtain

As discussed earlier in this paper, all the elastic parameters of a k, = qf/c = o/2h
material can be calculated from the measurement of longitudinal
and shear phase velocities. The technique described in the previous or c = 4h/(o/f)
section is the conventional method of measuring the wave speed. If
the specimen is thick (where the reflections can be separated in and k= ln(M)
time domain), the transit time method is the easiest and very effi-
cient. However. if the specimen is thin that method breaks down
and cannot be used. Even when applicable, the conventional
method requires human judgment and interference to make good M JG**F* - !1/(T12T2I) in water immersion
measurements. The measurement of attenuation is not at all accu- M i
rate and by this method only group velocity can be measured. -IG*F* I /R", in direct contact

We have developed techniques which have eliminated all the
above mentioned limitations. A fully computerized technique has Similarly, if the pulse cannot be separated, then for the reflec-

been developed which can measure phase velocity and attenuation tion field:
for thick as well as thin specinens. The digitized signal in time
domain is transformed to the frequency domain by the use of Fast exp(-i2kh) = 10/(1 + 0)]R'1
Fourier Transforms (FFT). If two pulses can be separated, then
acoustic parameters, phase velocity. and attenuation are computed where 0 = R 12R 21IG*/F* - I]/(T 2 T21). Here G* is the FFT of
from the phase shift and loss of amplitude between two pulses in the entire reflected field and F* is the FFT of the reference signal.
the reflected or transmitted signal. If the pulses cannot be sepa- For the transmitted field:
rated, the complete signal is transformed by FFT and, by decon-
volving the signal with respect to a reference signal, the acoustic exp(-ih(k - k0 )) G
parameters are computed. For details of these techniques readers 1 - R', exp(-i2kh) T12 T 1,F*
are referred to Refs 12 and 13.

The techniques can be used both in the transmission and reflec- Here F* is the FFT of the signal at the receiver when there is no
tion mode. They can be used in direct contact or water immersion sample between the two transducers and G* is the FFT of the total
with a minor change in the governing equations. The techniques transmitted signal after the specimen is introduced in the acoustic
measure phase velocity and attenuation over a range of frequencies path.
from which the group velocity can be obtained. Due to the fact that Since fairly thick specimens were tested in the tests reported
attenuation can be measured accurately, a variety of potential ap- here. Eq I I has been used in the measurements.
plications of this technique are envisaged. The effect of tempera- The block diagram of the experimental setup is as shown in Fig.
ture up to the melting point of a material can be studied. The uni- 4. TI, analog signal is collected h:, JLe pulser-receiver and i- fed
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L 'men (S) of appropriate resonant length via a fused quartz spacer

PULSE GENERATOR L.COMPUTER rod (Fig. 5). The components are joined with Loctite or ceramic
I cement as test temperature dictates. The spacer rod may be omit-

ted for measurements near ambient temperatures. The resonant
L DIGT:ZING system is driven by a closed-loop oscillator which maintains a con-

IGNAL GENERATOR L OSCRL ,LSCIaE stant (preselected) gage voltage and hence a constant maximum

I , , strain amplitude in the specimen. During a test. values of the reso-
nant period of the DGS (drive-gage-specimen) system are recorded

POWER ANPLIFIEi SIGNAL AMPLIrIER and standard equations (Table 5) are used to calculate Young's
I modulus E. The validity of the measured value for E is determined

SWATEP BATH from the ratio R of the period in the specimen to that of the quartzL 1, sECI-;I crystals. Ideally the ratio should be unity. However. ratios between
TRANSMTTER 7 0.97 and 1.03 yield equally valid results. More detailed descrip-

TRANSMITTTER' R.CIVER tions of the PUCOT have been given elsewhere [14-161.
i The PUCOT is limited to frequencies between 20 and 200 kHz.

FIG. 4-Schematic diagram of the ultrasonic pulse spectroscopy Therefore specimens that resonate beyond this frequency range
technique. cannot be tested. The test specimen may be cylindrical or a paral-

lelepiped, but the cross section can vary in size and shape. The
ratio of specimen length to the largest dimension in the cross sec-
tion must exceed five to prevent dispersion of the ultrasonic wave.

into the digital oscilloscope. The signal is digitized in the oscillo- The strain amplitudc is in the range 10 t. WO-.
scope. The signal processing unit of this oscilluscope performs Fast The density of the specimens for the PUCOT study was deter-
Fourier Transform on the signal. The useful portion of the trans- mined by the Archimedes method.
formed signal is then acquired by the computer for the calculation
of the wave speed and the attenuation. In these steps several poten-
tial sources of errors can affect the results: (1) sampling interval, Magnetically Excited Resonance
(2) frequency resolution, and (3) transducer response. The first
factor is the digitizing interval of the acquired signal. The FFT of a Magnetically excited resonance involves the use of an instrument
1 MHz signal at 10. 20. 40, and 100 ns sampling intervals was stud- known as the Modul-R which measures the longitudinal resonant
ied. It was observed that at the 10, 20, or 40 ns sampling interval frequency of a specimen of ferromagnetic material near 25 kHz.
the frequency content of the signal is essentially the same. How- This frequency has been selected because it pernits use of a conve-
ever. at the 100 ns sampling interval, the signal loses some of its nient specimen length of about 100 mm. For convenience of calcu-
high frequency contents. The useful digitizing intervals depend on lations the specimen size is 104.63 by 6.35 mm. Thicknesses may
the frequency of the transducer being used. For example. for 10 vary from 0.203 to 2.03 nmm. The specineii must be ferromagnetic
MHz frequency, at the 40 ns interval some of the high frequency because both the specimen drive and pickup signals are derived
contents are lost. The second factor considered was the resolution from magnetostriction in the specimen.
of the signal in the frequency domain. A sampling interval of 40 ns A schematic diagram of the apparatus is given in Fig. 6. The
or less with a frequency resolution of 0.05 MHz or less is considered method of operation is as follows. The specimen is placed in the
adequate. This factor is also transducer frequency related. The coil assembly where it is supported by the bias coil frame at its
third factor considered was the useful range of the transducer fre- midlength location. A magnetic pulse initiates the vibration, set-
quency response. It was found that satisfactory measurements can ting up a field in the pickup coil from which a small signal is ampli-
be obtained over a frequency range given by 25% of the peak re- fied and fed into the drive coil. An alternating current passing
sponse amplitude. through the drive coil produces an alternating field in the interior

Three specimens were tested by the technique described above, of the coil. In the presence of this field, the specimen alternately
The phase versus frequency plot for these specimens was a straight contracts and extends longitudinally. These vibrations traverse the
line; hence it can be deduced that the phase velocity (-w/k) is specimen with the velocity of sound and appear as vibrations in the
equal to the group velocity (ddw/dk) for these specimens. part of the specimen encircled by the pickup coil. These changes in

The measurement of the wave speed is estimated to be accurate strain alter the permeability of the specimen and its magnetic flux
to ±0.05%. The results obtained for three specimens are pre- density. The altered magnetic flux density induces an alternating
sented in Tables 3 and 4. The density for Specimens B2.2 and AI.3 current in the pickup coil by amplifying the pickup signal and
was measured by the Archimedes principle; the density of Speci- feeding it back to the drive coil in the correct phase relationship
men Al. I was measured by direct measurement of dimensions and with the mechanical vibrations initiated by the bias coil. The speci-
mass. This resulted in a larger uncertainty in the measurement of men becomes the frequency-controlling element of the magneto-
density of Specimen AI. 1 and consequently in a larger error in the strictive oscillator, and only the fundamental longitudinal resonant
value of E. frequency is displayed on the digital output counter. On the basis

of the results obtained for modulus with this technique. the mag-

Pie:oelectric Ultrasonic Composite Oscillator Technique netic field imposed on the specimen is small enough to avoid the

(PUCOT I E effect.
For this interlaboratory study only Specimen B2.3 (ftrromag-

Essentially, the apparatus for the PUCOT consists of piezoelec- netic and of required dimensions) was tested with the Modul-R.
tric quartz drive (D) and gage (G) crystals to excite longitudinal or The density of the specimen was determined by the Archimedes
torsional ultrasonic (kHz) resonant stress waves in the tegt speci. method.
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TABLE 3-ASTM £28.03.05 dynamic Youna's modulus
,imerlaboraor. study.

Alloy A Raw Data Table

Laboratory Specimen E. GPa Densitv. g/cm -'

I 218.0 8.43 IlA
1.1 218.0 8.43
1.1 218.1 8.43
1.2 216.9 8.43
1.3 218.5 8.43

2 1.1 210.5 8.37t Chen/Phillips
1.3 209.2 8.339

3 1.1 31.4" 8.43 Lemmens
1.1 218.8 8.43
1.2 216.0 8.43
1.3 217.5 8.43
1.3 217.0 8.43
1.3 216.2 8.43
1.3 217.3 8.43

4 1.1 212.0 8.36 NBS/Parallel
1.3 205.0 8.30 NBS/Parallel
1.3 215.0 8.36 NBS/Perpendicular, pos. I**
1.3 207.0 8.36 NBS/Pcrpendicular. pos. 2**

1.2 216.9 8.371 Texas A&M (PUCOT)
1.4 216.6 8.373

6 1.1 215.6 8.38 Texas A&M (Kinra)
1.3 214.2 8.37

7 L. 203.0 8.25 3M
1.3 210.3 8.37

*Reject this value (wrong harmonic).
-See Fig. 3 for these positions.

Density listed for Laboratory 3 was determined at Laboratory 1.
Material: Inconel alloy 600, 25.4 mm diameter. hot-rolled annealed rod.
Specimens:

1.1: 6.35 mm diameter cylinder.
1.2: 25.4 mm diameter cylinder.
1.3: 3.18 by 6.35 by 101.6 mm flat strip.
1.4: 25.4 mm diameter cylinder (separate specimen for Laboratory 6).

Results deviations about the mean for Material A (Fig. 8) are all positive or

The results from the Interlaboratory Testing Program are quite all negative for a particular laboratory. While this result may sug-
TheresulsThedaareceived from the variouslaboratoria e bte gest particular systematic errors associated with the apparatus atvoluminous. The data received from the various laboratories by thebe negated by an in-senior author were convered into values of Young's modulus by spection of the deviations about the mean for Material B (Fig. 10).

use of the various equations presented in the Experimental Proce- Here the deviations for four of the eight laboratories are both posi-
dures section. These values of modulus (and density) are listed in tive and negative.
SI units in Tables 3 and 4. Finally, bar graphs of the Young's mod- A closer examination of Table 4 reveals that one of the results
alus measurements and the percentage deviations from the average (2.3) for Laboratory 4 is outlying. Indeed, this was precisely the
values of the moduli for Materials A and B are presented in Figs. 7 datum for which a poor signal was noted during testing (see section

also for the comments on anisotropy and texture). Therefore it
seems appropriate to discard this outlying result. When this is

Analysis of Results and Discussion done, the deviations about the mean for Material B group closely
(Fig. 10). The mean and standard deviation for the dynamic

Considering the wide variety of apparatus used in the eight labo- Young's modulus are 159.16 and 2.84 GPa, respectively, for Mate-
ratories, the results for dynamic Young's modulus of the two alloys rial R.
are encouraging. Tables 3 and 4 show that the moduhte ranges In connection with the adjustn.ent of the data a very important
from 203 to 219 GP- iur Mater,,i A and iron 15b to 172 GPa for point arises. The determination of the density of the specimen is an
Material B. The mean and standard deviation for Material A are intrinsic part of modulus determination for all the techniques
213.91 and 4.46 GPa, respectively. It is interesting to note that the used. Therefore it is necessary to consider the densi-y results from
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TABLE 4-ASTM E28.03.05 dmnamic Young's modulus interlaboratory study'.

Alloy B Raw Data Table

Laboratory Specimen E, GPa Density, g/cm'

1 2.1 161.5 8.34 IAI
2.2 159.9 8.34
2.3 157.2 8.34

2 2.1 164.1 8.392 Chen/Phillips
2.3 155.7 8.225

3 2.1 162.0 8.34 Lemmens
2.1 161.8 8.34
2.1 160.8 8.34
2.3 158.4 8.34

4 2.1 156.0" 8.25 NBS
2.3 172.0*e 8.25

5 2.1 156.0 8.27 Texas A&M (PUCOT)
2.3 162.0 8.26

6 2.2 163.0 8.27 Texas A&M (Kinra)

7 2.1 156.8 8.20 3M
2.3 155.8 8.17
2.3 158.0 8.17

S 2.3 159.2 8.26 Modul-R

Density listed for Laboratory 3 was determined at Laboratory 1.
Material: Incoloy alloy 907. 19.0S im thick, hot-rolled flat.
Specimens: 2.1: 6.35 mm diameter cylinder.

2.2: 25.4 mm diameter cylinder.
2.3: 1.91 by 6.35 by 101.6 mm flat strip.

*Wave propagation parallel to the length of the specimen.
"Wave propagation perpendicular to the length of the specimen.

THREE COMPONENT FOUR COMPONENT TABLE 5-PUCOT equarions for the threc-component system.
SYSTEM SYSTEM

DRIVE L = (1/2f)(E/o) X!2
7::/ 7(S) = m(S)" -r(DG)i(DGS)/A

A = 1 7DG)nm (DGS) - 7(DGS):m (DG) I:

E = 4 L/7(S)
GAGE L.4j L = specimen length

III-f =frequency

p = density

ECIMEN X= wavelength r
USED QUARTZ i resonant period

SPACER ROD I I S = specimen
I I D = drive crystal

SPECIMEN I -I FURNACE G gage CrystalSU I FRA = mass

FIG. S-cagiaet _.!a ram of the PUCOT. Left.hana side: three.com.
ponent system for measurements at room temperature" right.hand side: used, while at others the density was determined from masses andfour.component system for measurements at temperatures abow room physical dimensions of the specimens. That the deviations abouttemperature. Shown is the arrangement with longitudinal quart: crystals, the means for densities are mostly less than .0e is encouraging.

To proceed with the final adjustment of the dynamic Young's
modulus data we have used what we term common densir * andall the laboratories in more detail. Figi-es 11 and 12 show bar romp- Common dcnt' for the material is the

ch3ri of density for Materials A and B. For Material A the mean value obtained by Laboratory 4 (NBS): Alloy A, 8.36 g/cm3; Alloy
density was found to be 8.361 g/cm3 with a standard deviation of B. 8.25 g/cm 3. (These values are very close to the means given in
0.048 g/cml: the corresponding values for Material B are 8.263 Figs. 11 and 12.) Common mathentatics is a term indicating appli-
and 0.072 g/cm3. Again it must be remembered that at some of the cation of the same equations (including certain correction factors
laboratories the Archimedes method of density determination was for shape and aspect ratio of the specimens, given by Spinner and
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FEEDBACK SIGNAL IS AMPLIFIED 4 APPLIED TO DRIVE COIL

AMPLIFIER

FREQUENCY COUNTER
(INOICATES RESONANT

FREOUENCY OF

SPECIMEN SPECIMEN I
SUPPORTED AT

MIDPOINT BY DIAS
rM COIL (Mr

STEEL SPECIMEN

DRIVE COIL BIAS COIL PICKUP COIL

1PRODUCES ALTERNATING (PULSED TO (SENSES ALTERNATE COMPRESSIVE
FIELD IN SPECIMEN ) INITIATE VIBRATION I & TENSILE STRAINS IN SPECIMEN I

STEEL SPECIMEN IS USED AS FREOUENCY.CONTROLLING
ELEMENT IN MAGNETOSTRICTIVE OSCILLATOR

FIG. 6-Schematic diagram of the magnetically excited resonance system known as the
Modul-R.

0 4 90 1
MATERAL A RESUL'S MATERIAL 8 RESULTS

MEAl, * 213 91 CA. STANDARO OEVIATION - A 6 MEAN *59 1 CPA. STANDARD DEVIATION 2 54

30 LAO 13 ESULT FOP SPECIUEN I EXCLUDr5 180 ". LAB 0 4 RESULT FOR SPECIMEN 2.3 EXCLUDED

:,75

7, 1:- 70

165.... .... ...............----.....
2 1 0 1 60. = ........ ..... ..... ........... .... ....... ......... ..... ............. .......
200 I SO

195 145

0 40

5 6 a 9 0 1 2- 3 4 5 6 7 8 9
LABORATORY LABORATORY

FIG. 7-Values of dyamic Young's modulus for Material A measured FIG. 9-Values of dynamic Young s modulus for Material B measured
in the laboratories taking part int tile testing program. in the laboratories taking part in the test ing program.

8: 8
7 MATERIAL * RESULTS 7 MATERIAL RESULTS

6 AN - 213 91 GPA. STANOARO D(EIATION . A E
6  6 MEAN - IS 16 CPA. STANOARO DEVIATION . 2 84

5 1 LAB 13 RESULT TOR SPECIMEI I I EXCLUDED 4 5 LAO I 
4

RESULT FOR SPECIMEN 2.3 EXCLUDED
S 4.1 4 .

:~~ 33101 ..... ............ ... .. .... 1 ........... A ...... .............. ................. ...... ........... .... ...... ............ , ..... ......
T 0 ' f'-.-6-2

-4 t -43

-i -- T - -I I I I I .. S
0 I 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

LABO;:ATORY LABORATORY

FIG. 8-PercentaSe deviations from the mean value of dynamic Young's FIG. 10-Percentage deviations from the mean value of dynamic
modulus for Materiel A. Young's modulus for Material B.
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8.6 240

8.55 "tA DPIASITI - 4 361 G/Cw'. STANOARD DEVIATION 046 235 MATEIAL A ISULIS

LAB 13 OCKSI OCICRMIIED AT LAB #1 ADJUSTED MCAN . 213 3 CPA. STANDARD DEVIATION * 3 43e~ s" .( '/ , 2 3 0 LAI 83 RESULT to , s ,EC ,M CN I , I EXC UDED
8.45 225 T

84 0 220

.. 8... ..................... ....... . .. 21.

~ 83a 210
- A-I

&25 1 ,
.25 205 20

8.15 I 90 I I8.5 95 I

2 3 4 5 6 7 8 9
LABORATORY LABORATORY

FIG. I I-Values of densi ' determined for Material A at the various FIG. 13-Dynamic Young's modulus resuhs.for Material A with adjust-
laboratories. ments jor common dcnsit.v and common mathematics.

8..6 .
MEAh DENSIY . 263 C/CM'. STANDARD DEVIATION 072 j .C~ARtuS

LAB 1, DENSITY DETERMINED AT LAS 11 6 ADJUSTED EAN .213 3 CPA. STANODAR DEVIATION 3 43

8.5 -,,A /5 LAB #3 RESULT OR SPECtu N t I EXCLUDED

8.45 3

2 0 E

S8.3 +± TI

8.25 ...... ... ...... ..... ................................. .~ . Z T

8.2 I -5-.

8.15 -6-

8.T 
T

0 22 3 4 5 6 7 8 9 0 2 3 ' 5 6 7 8 2

LABORATORY LABORATORY

FIG. 12-Values of density determined for Material B at the various FIG. 14-Perentage deviations from the mean value of dynamic
laboratories. Young "s modulus for Material A with adjustments for common densi " and

common mathematics.

Tefft 121) to convert measured values of frequency to values of laboratory Testing Program for dynamic Young's modulus, it is
modulus for the free-free beam technique (Laboratories 1, 2, and instructive to look at the results from the earlier round-robin study
7) and for the impulse technique (Laboratory 3). With these ad- done at seven laboratories for static Young's modulus 117]. For the
justments, the final results are presented in Figs. 13 to 16. For Al- static modulus on a steel specimen the mean value was 211.3 GPa
lay A the mean value of dynamic Young's modulus is 213.3 GPa with a standard deviation of 5.1 GPa or 2.4%.
with a standard deviation of 3.43 GPa (1.6%). The corresponding There does not appear to be any significant effect of frequency
values for Alloy B are 160.59 and 2.37 GPa (1.5%), with the result on the value of dynamic Young's modulus in the materials exam-
for Specimen 2.3 from Laboratory 4 removed. ined. Specifically, frequencies as low as 780 Hz (Laboratory 1) and

A further comment on the final adjustments of the dynamic as high as 15 MHz (Laboratory 4) were used for the modulus mea-
Young's modulus data is in order. The value of modulus for Speci- surements, but no frequency dependence was established.
men Al.3 measured at Laboratory 7 was obtained using the first
overtone rather than the fundamental. This would cause a lowering
of the precision of the modulus value. The standard deviations (1.5
and 1.6%) about the means mentioned above are therefore larger From this study of dynamic Young's modulus measurements,
than are potentially realizable by the dynamic techniques used. performed as an Interlaboratory Testing Program involving six

To put a perspective on the quality of the results from this Inter- types of apparatus, six different organizations, and specimens

L
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t90o tion of 3.4 GPa, while the corresponding values for Incoloy 907

1 MATERIAL S RESULTS j (Alloy B) were 160.6 and 2.4 GPa, respectively. These modulus val-
ADJUJSTED WEAN . 160 St GPA. STANDARD DEVIATION *2.37 * ues are based on the density values of 8.36 and 8.25 g/CM 3 for Ma-

Z. I o te 4RL FO SPECIMEN 2.3 ECLDE terials A asnd B. respectively, measured at NBS. and on common
~ 175mathematical equations for certain techniques used in this study.

T S. There does not appear to be any significant effect of fre-
17D quency on dynamic Young's modulus in the materials tested for

.. '65the frequency range 780 Hz to 15 MHz.

......... ... .. ...... ... .... ...... .....
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A New Technique for Ultrasonic-Nondestructive
Evaluation of Thin Specimens

by V.K. Kinra and V. Dayal

ABSTRACT-Conbining standard FFT methos with conventional Q = density of specimen, g/ml
ultrasonics, a method has been developed for measuring the Q. = density of water, g/ml
phase velocity, the group velocity and the attenuation in ultra- 0 = phase of a complex number
thin specimens (submillimeter or subwavelength in thickness). = circular frequency, rad/ps
A detailed description of this technique is given. The tech-
nique was used on four disparate materials: aluminum, an < > = aggregate property of composite
epoxy, a particulate composite and a graphite-fiberlepoxy
composite. The method works equally well for thin or thick Introduction
specimens, and for dispersive as well as nondispersive media.

The classical method of measuring the speed of sound
List of Symbols in nondispersive media is the time of flight method (see

Ref. I for example). We note that in a nondispersive
a = a characteristic length; half crack length or isotropic medium the phase velocity and the group velocity

particle radius, mm are identical.' When the material -- either dispersive or
c, c, = longitudinal phase velocity in specimen, exhibits frequency-dependent attenm ',in this method

nun/ps breaks down and a suitable method then is the so-called
co = longitudinal phase velocity of wave in tone-burst method. Here, a burst of pure tone, typically

immersion medium (water), mm/,Us about ten cycles in duration is used. This places a con-
cs = group velocity in specimen, mm/ps straint on the specimen thickness; it must be thick enough
f = frequency, MHz so that the tone-burst reflections from the two faces of

f. = cut-off frequency, MHz the specimen can be clearly separated in the time domain,
Af = frequency resolution, MHz i.e., it should be roughly five-wavelengths thick. For

FO(w) = Fourier transform of f(t) example in steel at, say, one-MHz frequency, the required
G*(w) = Fourier transform of g(t) minimum thickness would be about 30 mm. There are

h = plate thickness, mm many situations of practical importance where one musti = /T conduct an ultrasonic examination of specimens which

k = complex wave number = k, + ik2, mm-' are considerably thinner than five wavelengths. Forko = wave number in water, real, ram-1 example, aircraft and aerospace structures using graphite/

k, = w/c, wave number in specimen, mm-' epoxy or metal-matrix composites employ panels as thin
k2 = attenuation coefficient, nepers/mm as one mm. Chang et al.1 have developed a technique for
m = integer; number of complete round trips taken the measurement of phase velocity in thin laminates. They

by the wave across the plate thickness perform an FFT of the front-surface and the back-surface
M = magnitude of a complex number reflections of a signal. The amplitude versus frequency
N = number of digitizing points curve is characterized by a series of resonance peaks. The

Ry = reflection coefficient in medium i from peak spacing yields the phase velocity which is the same
medhnnj as the group velocity. The deviation between the group-

T = sampling interval in time donain, nvelocity vector and the phase-velocity vector is zero for
To. = signal length, ps wave propagation parallel or perpendicular to the fibers;T = trsmi ingth c n fit is assumed that the material is nondispersive. This

u= transmi nion coeffniient for a wave incident in method requires human analysis of data. Further, one
medium and transmitted into mediumj cannot measure attenuation by this method. More

u = icle displacement recently, Heyman' has developed a technique called phase-
x - dista plce insensitive tone-burst spectroscopy. Although this tech-
X = dormlized frequency. 21falc, nique yields excellent results, it requires the use of rather
X ( wavelength, m n specialized and sophisticated transducers called acousto-

-normaid wave n , 2electric transducers (AET) which are not yet commercially
"= normmimd wave number, 2wfa/ <c, > available.

By combining standard FIF methods with conventional
ultrasonics (using commercially available broadband

Y.K. Kthve MM temr) is Amd*. Prewor, Dtwtrt of plezelectric transducers) we have been able to develop a
AW V TwaM Adh M Lhurl &OIfl . S.4.vIoin TX method by which one can measure the phase velocity, the7St8. K D~wt 1MM Akin~) Lw Aw.Liat Pev~ q. tnvnt of
A A , I Ehwin ls Nwl CWvbmr Aa r tnilItry, omn.,s group velocity and the attenuation in ultra-thin specimens
NCV4 t. (submillimeter or subwavelength in thickness). There are
OPO oiiiiiwi aian jA A* 31. ,bd m nwrl , mm any situations in which one cannot obtain a series of
OAVs 2, iW. resomnace peaks required by the method of Chang et a.

2"n * awtember i



Our method works even in the absence of a single The total transmitted field may be written as
resonance peak. A detailed description of this technique
is the central objective of this paper. We will illustrate the u' = T. Ta E R 'f.(s - s.); s = h(2m + 1) k - ko]
use of this technique on four distinctly disparate materials: nr0

aluminum, an epoxy, a particulate composite and a (6)
graphite-fiber/epoxy composite. It will be demonstrated
that this technique works equally well for thin or thick In eqs (4) and (6) m is the number of complete round
specimens, and for dispersive as well as nondispersive trips taken by the wave across the plate thickness h.
media. The Fourier transform of a functionf(t) is defined as

Thory F*(w) = "f(t)e-"dt, -co<w<o

Consider an infinite elastic plate immersed in an elastic -
fluid (water). A Lagrangian diagram indicating the space- (7a)
time location of a wavefront which occupied the position
x = 0 at time t = 0 is shown in Fig. 1. A plane-fronted with the associated inverse transform given by
finite-duration pulse, Ray 1, is normally incident on the 1I__
plate. This results in an infinite series of reflected and f(t) = jF*(w) e"' dw (7b)
transmitted pulses. The expressions for the reflection and
transmission coefficients of a displacement wave for
perfectly elastic media may be found in Achenbach's Analysis for Thick Specimens
book.' We first consider the case of a relatively thick specimen

Let the displacement in the incident field be given by such that various pulses in Fig. I can be clearly separated
from each other in the time domain. Let f(t) be the signal

u '
f fo(ot - kox) (1) corresponding to Ray 2 and g(t) be the signal corre-

where M(s) a 0 for s < 0. Here w is the circular frequency sponding to Rays 2 and 6 combined sensed by a trans-
and ko is the wave number of a monochromatic harmonic ducer at x = 0. (This is the so-called pulse-echo mode.)
wave; ce = c/k*. The displacement field along the various Then
reflected rays may be written as f(t) = R,,fo(wt - 2kea) (8)

and
u2 = R. 2fo(s - sa); s2 = 2kaa

u, = T12R 2 T2 f(s -s); so = 2ka+ 2kh g(t) = T,2R2 , Tafo(wt - 2koa - 2kh) + f(t) (9)

(2) Let F*(w), G*(w) and F**(w) be the Fourier transforms
uto= TnRlTfe(s- sto); sw. = 2ka + 4kh of f(t), g(t) and f.(t), respectively. Then, a straight-

forward application of the shifting theorem for Fourier
etc. transforms yields

Here, s = wt + kox, h =- b-a is the plate thickness, F*(w) = Re"i1eoFo*(w) (10)
R4, is the reflection coefficient in medium i from medium
j, To is the transmission coefficient for a wave incident G*(M) = R,2F*(w)eA2kOe(l - T,,T2,e -

iZ
2 il (1i)

in medium i and transmitted into medium j, k = w/c,
c is the phase velocity in the plate, and and

R = CoQC =_ -Ra, GO(,) - 1 - T,.T,e - ' (12)
QoCo + Qc FO(()

I = 2 cs - 2 ( It is emphasized that in the foregoing it is assumed that
s.ce + QC the plate behaves in a perfectly elastic manner, i.e., the

where e. and e are, respectively, the density of water and wave number k is real and c = wik is a constant. The
the pAte material. The entire reflected field, u" = u, +
u, + um +.... a, may be written as

u" I- Rsfo(s- s2) + T,2R.,T 2, Ra 2 'fe(s- s.) WATER SPECIMEN WATERn- I so
s. - 2ka + m 2kh (4) t 19.--

In an exactly analogous manner, one can write down 14

the expressions for the transmitted pulses. With s fit - to 11

as, - T,2T,,f.(s- 4); s4 - h(k - ko) 7 4

u - T,2R 1, T,f9(s - so); s - h(3k-ko) (5)

u, 2 - T2 RI, Tatfe($ - six); si - h(Sk - ko) Fig. I-VaiOus rflctiona and
transmilons from a plate Immemed

etc. In water

Emwrfneal MeO&Uaae m



key term in eqs (1I) and (12) is e-IZAh or e_' ". Thus, in if G*we is u M
eq (11) if one plots IGO(w)I versus w it will be charac- F*(W)T,T, s set equal to Me then
terized by a series of resonance peaks whose spacing is
given by A(2hw/c) = 2w, or, in view ofw = 2wf, k,(w) 41h (17a)

and
c = 2kA, (13) (w) = (In M)/h (17b)

Measurement of c in aluminum using eq (13) is illustrated where M - I
in Fig. 2. Here F(w) = 1F(w)t and G(w) = 1G*(). wF*(he)/T, 2 T,. Substituting k, = 2zf/c,
Note that G(w) consists of the transducer response, we get
F(w), superimposed by an oscillation due to e'.d)e term.

A further improvement in the measurement method can c = 21rh
be achieved by plotting [G*(w)/F*(w) - 11, eq (12). This ( and k(w) = In Mh (18)

is illustrated in Fig. 3. By taking out the shape of the
transducer response we are left with oscillations due to the Another variation of this technique is when signals for
constructive and destructive interference between the both Rays 4 and 8 are quite large. Then the following
front-surface (Ray 2) and back-surface reflections (Ray 6). approach yields more accurate results because the data

Even though eq (12) is derived for an elastic material it reduction can be done from a single experiment. Let
is rigorously valid for a linear-viscoelastic material provided f(t) and g(t) be the signals corresponding to Rays 4 and
the damping is small, i.e., in k = k, + ik2 , k2 /k, < < 1. 8, let F*(w) and G*(w) be their Fourier transforms then
This elementary proof is deferred to the Appendix. We 0*(w) - R, e
rewrite eq (12) as *(w)

F'(W) 2(19)
e - ' - (w)/F(w)- I]/T,1 T, = Me'* as before, if we set G*(w)/F*(w) Rl, = Me' *, then

eq (15) can be used to calculate the wave speed and
(14a) attenuation. In the following for brevity, these methods

will be referred to as the second/first method.
Then, by equating real and imaginary parts, We note that this method is equally effective for

dispersive media. From eq (14) one plots k, versus w.
k,(w) = - 0/2h A secant to the curve yields inverse of the phase velocity

and (phase slowness). For dispersive media a quantity of
ka(w) = (In M)/2h (14b) interest is the group velocity. This is the speed with

which energy propagates in a medium, c. = w/ ak,;
where M = jI(G*(w)/F*(w)I - lI/T,12 Ti. Since this too can be computed from the phase plot, and eq
k,(w) = wc and w = 2rf (14b) yields frequency-dependent attenuation. Finally, we

4w iintroduce a normalized attenuation kX. This is the
c l4h and k2(w) (InM) /2h (15) attenuation of a wave over one wavelength. The motiva-

tion for this particular normalization is that for a linear-viscoelastic material kd.. is independent of frequency.
These are the desired equations for calculating the phase

velocity and the attenuation.
Now consider the transmitted field for a thick specimen. Analysis for Thin Composites

Two measurements are made. In the first, the specimen is In this paper the qualifiers 'thick' and 'thin' are used
removed from the water path, i.e., the wave travels solely in the followirng sense. When various reflections or trans-
through water. Let the receiving transducer be located at missions corresponding to a short-duration pulse can be
some x = I> b. Then u '(I,t) a f(t) = fo(wt - k0l). separated in the time domain, the specimen is considered
The specimen is now inserted in the wavepath and the thick. However, the duration (or length) of the pulse
signal due to Ray 4 alone is recorded. Thus, u4(I, t) - depends on the center frequency of the transducer.
g(t) = T,2 Tf,(t - kol - 2k.a - kh). Then, Hence, with reference to the absolute dimensions of the

specimen the use of the word 'thick' is quite arbitrary.
(1) 6) On the other hand the word 'thick' is not arbitrary with

2 StAlE ALUMIM

30 AL ALLW4IM ' '7.. 31 1 ! ., I

7 t0 13 iS
0 FPEILANCY. f 0641)

0 a o Is 2 Fig. 3-Magnitude of
PflhOWNCV. (""a) 6 *(w)lF*(w) - 1 from Fig. 2.

Fig. 2-Magnitudes of Fourier Resoance spacing can be
trensforms of 1(t) and g(t) when measured aily from the zero
pulses am be separated line crossings
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respect to the wavelength, i.e., a specimen is thick if, Let g(t) be the total transmitted field, Rays 4. B, 12,
roughly, h 2 3 ). . . . o. Then from eq (6)

The total reflected field comprising Rays 2. 6, 10, 14 O

c. at x = 0 is given by eq (12) as g(t) = Tz Tz, E R2'fol wt - kol - h{(2m + I)k - k)]
M=0

Ur(ot) _ g(t) = Rzfo(wt- 2kea) (26)

T , G * ( c. ) _ T , iT a e -A ( & -o )(T zR2,T2, E Rz2(-')f.(,jt- 2koa-m2kh) F(--) = !R Z 
"'

h (27)

M= F'(w) I -R 21 e-'2,n=1

(20) We note one major difference between eqs (23) and (27).
Unlike eq (23), eq (27) is a quadratic in Z = exp (- ikh).

Note that Ray 2 cannot be used as the reference signal. This presents some additional numerical problems. These
One has to conduct a separate experiment as follows. The are discussed next. Equation (27) may be rewritten as
thin coupon is replaced by a thick coupon with the front
surface precisely at x = a. Let the front-surface reflection ZI + Z Y- Do = 0
be labeled f(t). Then where

f(t) = R,zfo(.t - 2koa) y TTZ, F*(w) (28)R2,Z. G*(w) (8

F*() = R,.e iko F*(.) Z= exp (-ihk.)

G*(w) F(c) + T,ZRZ, T2 , E R2("-)F*(w) R

e-itZko .
'

+ 2kb (21) and ko is the wave number in water. Since the phase
velocity in water is known, Zo is known a priori. If the

Let acoustic impedance of the plate, Qc, was known, one
= R', e 2

kA could calculate Tij and Ri. However, c is precisely the
Z =< ! (22) unknown we are seeking to measure. This problem could

be solved by a simple iteration procedure. An approximate
Then phase velocity was initially used in the algorithm to

T.2 T O, estimate Tij and Ri. The quadratic equation (28) is
I = !a'4T2R, Z. solved and two roots of Z are obtained. The correct rootmt M-1is chosen based on the fact that the phase of Z decreases

Observing that for IZI < 1, (1 - Z)-l I + Z + Z2 + as frequency increases (for the other root the reverse is

c., and defining true). This velocity is used for the next iteration cycle.
This procedure converges very rapidly. When we purposely

R ,2R1 , ( (.) 1 ) supplied an initial phase velocity with a very large error
.T, T2 , F(-) (30 percent), the convergence was found to occur in about

five iterations. More realistically, the wave speed can be
we get estimated to within five percent. Here convergence to

= (23) within 0.01 percent occurs within three or four iterations.
1 +0 When the value of c obtained by this procedure was

substituted back into eq (28) to calculate attenuation,
From Z one can readily calculate the complex-valued kX2X was found to be an oscillatory function of frequency
wave number k(w). for a linear viscoelastic material, namely, an epoxy. Now,

For completeness we include here a variation of this it is well known that for such a material k2.\ is a constant.
method. Suppose a thick coupon to obtain a reference The oscillating nature of k,,\ could, however, be readily
signal is not available (this diffic,,ty will be discussed explained as follows. A detailed numerical examination of
later). One can then use a thick specimen of some other eq (28) revealed that the calculation of k2 ), is very sensitive
material, we have used a block of aluminum. Let the to small variation in the phase velocity c. The oscillations
acoustic impedance of this material be Q,c,. Let the front- were due to the fact that the measured velocity was
surface reflection be f(t) = R f0 (wl - 2kea) where the different from the true velocity. This problem could be
reflection coefficient P = (qoce - Q,c,)/(Qoc. + ,c,), resolved in the following manner. If one takes the absolute
and g(t) is st given by eq (IS). As before with value of both sides, eq (25) can be rewritten as follows.

T,2 2 , ']F(24) cos- - + R G(w)

Z - ,2, e' -" =/( +P) (2) 1 [R, e-" + ' J (29)
2 2 .,20

In the followinS for brevity these methods will be referred
to atheall/firnt method. where q = 2h kk/c. The terms in eq (29) have been

We no* consider the transmitted field. Here a second separated judiciously as follows. The left-hand side (LHS)
transducer is used as a receiver at some x - I> b. To is a function of wave speed only while the riht-hand side
obtain refe signal the specmen is removed and the (RHS) depends on both the wave speed and the attenua-
sin through watr Is remded tion. The RHS is a sum of two exponentials and, there-

fore, is not an oscillatory function of frequency f. On the
f(t) u'(l,t) = f.(t - kl) other hand, the LHS Is the sum of a cosine function of

xprimenful Aota ce 9 21



frequency and the experimentally determined F*(w)/G*(w) velocity in monolithic materials to a precision of 0.1 per-
which was found to be oscillatory. Now if the correct cent, and velocity and attenuation in heterogeneous
value of c is not used in eq (29) the periods of the two materials to a precision of 0.2 percent and 2 percent,
terms do not match and the oscillatory parts do not cancel respectively. The higher scatter in the composite materials
each other as they would for the correct value of c. With is due to inherent spatial variation in the material
this in mind, the RHS is viewed as the reference curve properties. In order to achieve this precision the measure-
and a numerical search is made around the value of c ment system was subjected to systematic calibration
obtained by the iterative proced-re described earlier, to procedures. These are described next.
minimize the root-sum-square of the LHS. This fixes c.
Now we view the LHS as the reference curve and conduct
a numerical search over a range of kaX so as to minimize SAMPLING INTERVAL

the root-sum-square between the LHS and the RHS. This The analog signal from the transducer is digitized at a
fixes k 1 . specified sampling interval by the digitizing oscilloscope.

Finally, it is noted that the theoretical procedures The object of this study was to determine an upper bound
developed in this section are equally valid for both the on the sampling interval below which the harmonic distor-
longitudinal as well as the shear disturbances. tion was considered acceptable. We quote here the limits

on the sampling interval as specified by the sampling
Experimental Procedures theorem. "if the sampling interval T is chosen equal to

112f,, where f, is the highest frequency component of the
signal, aliasing will not occur."' Aliasing is defined as

Measurement Procedures "the distortion of the desired Fourier transform of a

A schematic of the apparatus is shown in Fig. 4. The sampled function".' An experimental verification of this
heart of the system is a pair of accurately matched, statement is given here. Figures 5 and 6 show the amplitude
broadband, water-immersion piezoelectric transducers. An and phase response of a I0-MHz transducer at sampling
experiment is initiated at time i = 0 by a triggering pulse intervals of 10 nS (100 MHz), 20 nS (50 MHz), 40 nS
produced by a pulser/receiver; the pulse is used to trigger (25 MHz), and 100 ns (10 MHz). The highest frequency
a digitizing oscilloscope; simultaneously the pulser/ content of this signal is about 10 MHz and so the sampling
receiver produces a short-duration (about 100 ns) large- interval of 50 nS would be acceptable from the viewpoint
amplitude (about 200 V) spike which is applied to the of aliasing. It is obvious from Fig. 5 that at 10-nS or 20-
transmitting transducer. In the reflection mode it also acts nS sampling intervals, the frequency content of the signal
as a receiver. The received signal is post-amplified (to is essentially the same. However at 40-nS sampling inter-
about one volt) and then digitized with maximum sampling vals, significant distortion of the amplitude is observed;
rate of 100 MHz (or 10 nanoseconds per point). To but the phase remains relatively unaffected. At 100 nS,
reduce the ubiquitous random errors, each measurement both the amplitude and the phase plots are completely
is averaged over a sample size of 64. A laboratory com- distorted. This would come as no surprise for here we are
puter controls all operations of the digital oscilloscope sampling only one point per cycle. In this work we have
through an IEEE bus. The built-in signal processor of the used either a 10-nS or 20-nS sampling interval.
oscilloscope performs FFT on the acquired signals and the
relevant parts of the data are then transferred to the FREQUENCY RESOLUTION
computer for further analysis. It is seen from eqs (15) and (18) that wave speed can be

calculated if the slope (#/J) of the phase versus fre-
Calibration Procedures quency curve can be obtained. The FFT algorithm

Since our objective in this research is to estimate damage provides the real and imaginary components of the trans-
in composite materials from a measurement of the ultra- formed signals and from these the phase is calculated. The
sonic parameters, accuracy is of prime importance. For computer can provide the phase angle in the range of
example, one percent error in estimating the phase velocity - w/2 to + r / 2 from which the angle in the range of 2 r
may, for some typical laminates, correspond to a ten- can be deduced very easily, depending on the quadrant in
percent error in estimating the remaining fatigue life. which the phaser lies. Hence we obtain a sawtooth-type
Typically each measurement was repeated about ten phase versus frequency plot. It was observed that for the
times. Based on one standard deviation we estimate the signal under consideration, phase increases monotonically
errors in our measurement as follows. We can determine with the frequency. Thus the sawtooth plot has to be

converted to a continuous phase versus frequency curve
before its slope can be obtained to calculate the wave
speed. The computer algorithm developed tracks the
rotation of the phase vector and 2 r radians are added to

cmwuTr the phase each time the vector completes a cycle.
Let the sampling interval be T and the total number of

KUM sampled points be N. The total length of the signal is
I ECEIVE* 0S1C L"LDZSMC0PE T. f (N - I) T. Let the frequency resolution be Af, then

Af= 1/To = I /(N - 1)T. The consideration of aliasing
fixes T. Hence N is the only parameter that can be adjusted

rem to obtain the desired frequency resolution. For example,
if the desired Af = 0.05 MHz/point, T is 10 nS, then

T,.. rCR N - 2000 or 2046. The length of a signal can be readily
VA1 3A. increased simply by adding eros at the end of the signal.

P11. 4-S1lack diagram of the Of course, this is accompanied by an increased computa-
nxpwlmeftal sup tion time.
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TRNSDUCEa REsIoNsE is shown in Fig. 8(a). A particular peak (say the fourth
peak) near the center of the tone burst is selected as the

Consider a 10-MHz transducer in direct contact with an reference peak. The twice transit time, 2h/c, could be
aluminum plate. An FFT of the back-wall reflection was measured to an accuracy of I nS. Our estimate of error in
obtained using the procedures outlined in the section the phase velocity is 0.2 percent. See Ref. 10 for a detailed
'Measurement Procedures' above. The results are presented error analysis. In the second measurement the tone burst
in Fg. 7 in the form of magnitude and phase of the was reduced to about one cycle; see Fig. 8(b). Note that
complex-valued Fourier transform. Experience indicated the pulses can be clearly separated. The second/first
that satisfactory measurements can be made over a fre- method, eq (15). was used to analyze these data. Since
quency range (or bandwidth) of 5 MHz to 11 MHz given only the first two pulses are needed for data analysis, the
by about 25 percent of the peak amplitude response as remaining pulses are electronically gated out or nulled.
shown in the figure. It was observed that the phase versus In the third measurement, the data analyzed remain the
frequency curve over this range is a straight line; outside same, i.e., Fig. 8(b). However, the all/first method, eq
this range it becomes nonfincar. (27), is used. In other words, g(t) is now viewed as the

sum of all transmissions. For the remaining measurements
Results and Discussions the specimen was gradually machined down. The all/first

method was used to analyze the data. The pulses for

Wave Propagation in Nondispersive Media h = 1.686 nun are shown in Fig. 8(c). Note that the
conventional tone-burst method can no longer be used.

The main objective of this work is to develop tech- Though both methods developed in this work can be
niques suitable for very thin specimens. Therefore we used, we used the all/first method. The pulse for the next
subjected our techniques to the following critical test. A three thicknesses, h = 1.001, 0.613 and 0.258 mm are
thick aluminum plate (2.807 ±0.0025 mm) was first shown in Figs. 8(d), 8(e), 8(f), respectively. Because of the
tested using the conventional tone-burst method. Then the reduced thickness the pulses cannot be separated in the
thickness was gradually machined down to 0.258 mm time domain. Therefdre, even the second/first method
(about 10 mil, a very thin foil) in five steps. In non- cannot be used; here we have to use the all/first method.
dimensional terms the thickness was reduced from about For the thinnest specimen the round trip time is only
4.4 to 0.4 wavelengths; a frequency of 10 MHz was used.
At each step c was measured. We could have used five
different samples. Instead we adopted the foregoing
procedure in order to ensure that we are always testing
exactly the same material. The density was measured by 1.00 140

the Archimedes principle. Our estimate of the error in _____ I05o

density is ±0.015 percent. The results are presented in WO 75

Table 1. The first measurement was made using the . 0 50 70

conventional tone-burst method." The time-domain signal 0 0

0. 25 i 35 -

00

2 4 6 a 10 12 14
FREQULE@1Y. f (MHz)

1.0 0 sFig. 7-Useful frequency range
20 os oof a 10-MHz transducer

S 100 ,s

0 2 4 6 - 10

FRt A.IENCY, f (MZ) b. h-2.S m7

Fig. 5-Amplitude response of a

10-MHz transducer at different
digitizing intervals h-]. son
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rNOUR Nowa1 Fig. 8-10-MHz sn through aluminum

Fig. G-Phase response of a 10- plates of different thickness. (a is for tone
MHz transducer at different burst. Others are for a single pulse of signal.
dligltizing kItrj. Plate thicknes given on ooh snal
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82 nS; the pulse duration is roughly 200 US. This gives rise metal specimen using a shear couplant. ignoring the 'main
to what appears to be 'ringing' in Fg. 8(f). bang', the remaining reflected signal was collected. From

With reference to Table 1, the average of all the the measurements of the longitudinal and shear velocity,
measurements is 6.342 mm/ps ±0.25 percent. We con- c. and c., and density, 0, the elastic constants E and '
dude that the all/irst method developed for ultra-thin can be readily calculated. The results of the round-robin
(subwavelength) specimens and the second/first method test are presented in Table 3. Reasonably good agreement
for moderately thin (about one wavelength) specimens (within 2.5 percent) is observed between the results ob-
yield results which agree to 0.25 percent with the con- tained in different laboratories using different techniques.
ventional tone-burst method. (We hesitate to make Next, we have tested our experimental method on a
absolute claims on accuracy because for the given piece of medium which is nondispersive but attenuative. An epoxy
aluminum we do not know the true value of the phase (EPON 828Z) was selected for this purpose. The results
velocity.) are presented in Table 4. Note that three frequencies,

The ideal method for 'calibrating' a new experimental spanning nearly a decade, were used. The phase velocity
technique is to use it to measure a quantity which is measured by the tone-burst method on a thick specimen
known with a ten times better accuracy. Unfortunately, is 2.915 mm/ps and agrees very well with that measured
the National Bureau of Standards has not yet developed a with the all/first technique.
standard for acoustic velocity (or elastic modulii). Our
laboratory did, however, participate in a six-laboratory Wave Propagation in Dispersive Media
ASTM round-robin conducted by Alan Wolfenden"
(Department of Mechanical Engineering, Texas A&M Finally, we tested our experimental procedures on a
University, College Station, TX 77843). This allowed us material which is simultaneously highly dispersive as well
an opportunity to compare our error estimates with those as highly attenuative. Towards this end we tested a ran-
of the others. The material tested were two nickel-based dom-particulate composite consisting of lead spheres in an
alloys; see Table 2 for a material and geometric descrip- epoxy matrix. These composites have been described in
tion. Since these specimens are very, very 'thick' (several Refs. 12 and 13. Transducers with 0.25-MHz center fre-
wavelengths), the second/first method, eq (15), was used. quency were employed. The second/first method in
Furthermore, shear velocity was also measured. Here a through-transmission mode, eq (16), was used.
shear (or Y cut) transducer was directly cemented onto the Kinra" has shown that wave propagation in these

composites occurs along two separate branches: (1) the
low-frequency, slower, acoustical branch along which the
particle motion is essentially in phase with the excitation,

TABLE 1-TEST RESULTS ON ALUMINUM SAMPLE and (2) the high-frequency, faster, optical branch along
which the particle motion is essentially out of phase with

Material: Aluminum the excitation. The two are separated by a cutoff fre-
Wave Type: Longitudinal quency which corresponds to the excitation of the rigid-
Mode: Transmission body-translational resonance of the heavy inclusions. This
Frequency: 10 MHz occurs when k,a = 0(1), where a is the inclusion radius.
Density: 2.8177 ± 0.0004 giml Around the cut-off frequency both the phase velocity and

h hl) c Plc Technique Reference the attenuation change dramatically with frequency. This
mm mml1 ,s percent Figure is what makes this composite such an interesting material

to study using our technique which was developed
2.807 4.4 6.3572 Toneburst 8a especially for dispersive media.
2.807 4.4 6.3239 0.013 SecondlFirst 8b The results for a dispersive material are presented now.
2.807 4.4 6.3275 0.010 AII/First 8Tm
1.686 2.7 6.3461 0.040 All/First 8c In Fig. 9 F(w) is the received signal with the specimen

1.001 1.6 6.3538 0.030 AllIFirst 8d removed while G*(w) is the signal with the specimen in
0.613 0.96 6.3594 0.130 All/First Se place; - is the volume fraction of inclusions. The dip in
0.256 0.4 6.3231 0.140 All/First 8f the amplitude of G*(w) corresponds to the cut-off fre-

TABLE 2-RESULTS OF ASTM ROUND-ROBIN TESTS OF Ni-BASED ALLOYS

Sample 1: Inconel Alloy 00
Composition: NI 37.46, C 0.01, Co 14.36, Nb 4.71, Ti 1.46, Fe 41.96
Teat F&queey: 50 MHz
Mode. Reflection

Sample 2 incoloy Alloy 907
Coposeitiom Ni 74.91, Cr 1W48, C 0.08, Fe 9.53

h 0 01 CA E
Sample mm giml mm/ps mm/ps GN/rn'

1.2* Gin 8371 5.872 3.161 216.9 : 0.14 percent 0.290 *0.20 percent
1A 6.36 1.373 5W877 3.163 216.6 * 0.15 percent 0.290 * 0.20 percent
21 18" 6n27 5.2"3 2.7306 163.0 *0.2B percent 0.3153 + 0.18 percent

*The JaW tW 0 # mv A s t So AW lft 00 WNW d (14 Is jm e ff/ift Nwt PRY~/e s a
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quency. The present measurement, , = 0.21 MHz, agrees attenuation curve is produced in a single experiment.
quite well with the earlier measurement' using the con- Another major advantage of this method is as follows.
ventional tone-burst method. We now introduce a nor- When one uses the tone-burst method, each point suffers
maiizedfreqency 0 m k,a = 2afa/c, and a normalized a scatter due to random errors; see Fig. 10. In the present
wave number f = < k > a = 2 ifal < c,> where method the whole curve may shift up or down but the
< > refers to an aggregate property of the composite shape of the curve will not be altered by the random
(an ensemble average). Figure 10 shows the frequency errors. Here we are mainly interested in the shape of the
versus wave number plot. As expected," along the dispersion curve. Figure 11 shows the normalized phase
acoustical branch at low frequencies the behavior is non- velocity versus frequency. The arrow labeled HASHIN is
dispersive; a straight line fitted through the data points the velocity calculated from the lower (appropriate) static
passes through the origin (< c, > c, = 0/t). The same bound due to Hashin and Shtrikman." The agreement
was noted at high frequencies along the optical branch. between the theory and the low-frequency results is
These two observations serve as critical checks on the considered quite satisfactory. As 0 increases the effective
accuracy of o-r measurement. The normalized phase inertia of the lead spheres (- QC 2) increases and the
velocity is given by the slope of the secant, < c, > 1c, = phase velocity decreases. At very high frequencies (it is
G/ , and the group velocity is given by the slope of the conjectured) the inertia becomes so large that the spheres
tangent, < c, >/c, = d0/df. The discrete tone-burst become essentially motionless. Thus they no longer con-
data from the earlier work" are also plotted; the agree- tribute to the inertia of the composite as perceived by the
ment is considered quite satisfactory. The present tech- effective wave. Hence the velocity increases dramatically
nique is tremendously faster. The entire dispersion and across the cut-off frequency and becomes frequency-

independent at very high frequencies. Figure Il(b) shows
the group velocity, i.e., the speed with which energy
flows in a composite. As expected, the group velocity is

TABLE 3-COMPARISON OF ASTM ROUND ROBIN
TESTS FOR THE YOUNG'S MODULUS, E

Lab/Sample 1.1 1.2 1.3 1.4 2.1 2.2 2.3 1.2
Load/Epoxy

1 218.0 216.9 218.5 - 161.5 159.9 157.2 -5. 4X
218.0 ..
218.1 F w

2 210.5 209.2 - - 164.1 - 155.7 W
3 218.8 216.0 217.5 162.0 - ..

217.0 - 161.8 - 158.4
216.2 160.8
217.3 , .3

4 212.0 - 205.0 - 156.0 - 172.0

5 215.6 - 214.2 - 156.0 - 162.0 0.1 .15 .2 .25 .3 .35 .4
6 (this work) - 216.9 - 216.6 163.0 - -.

7 203.0 - 210.3 - 158.8 - 155.8 FREQUENCY, f (Nfti)
158.0 Fig. 9-Magnitude of F" (w) (FFT of signal

through polystyrene delay rod) and G'(c()
Units for above values: GNIm2  (FFT of signal through polystyrene and lead/
Techniques: epoxy specimen). Note the dip In amplitude at
Lab. 1, 2.7 Free-Free Beam the cut-off frequency, Ic
Lab. 3 Impulse Fourier
Lab. 4 Pulse-Echo-Overlap Ultrasonic
Lab. 5 Piezoelectric Ultrasonic Oscillation (PUCOT)
Lab. 6 This work

TABLE 4-TEST RESULTS ON EPON 828-Z EPOXY .4X

Material: Epon 15Z epoxy 4
Wave Type: Longitudinal
mods: Transmission 3

Specimen thickness: 1I mm * 0.0 25
Specimen dsnelty 1.20= * 0.0004 giml 2

TOMt WAve I .1,
Frequency Speed k, a Technique

MHz mmi1.s percent Percent o
0 ,1 .2 .3 .4 .5 .1

1.0 2874 0.1 0.1340 1.4 ANItFirst VAVMMR, I
I.0 2.&4 0.14 0.824 1.5 AllIFIrst Fig. 10-Feqency - *so, and wae number

10.0 2.815 0.0 0.0875 1.0 AllIFIrst I - <tk >a, ourve fradlspeathe Ialpelxy
10.0 .016 0.24 M 2.2 Tone Burst specmln. Circled pok re dai from t. 12-14
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essentially constant at low and high frequencies. Around which is illuminated by the ultrasonic beam. The number
the cut-off frequency, D,, it undergoes large fluctuations. of cracks seen by the beam is also listed. Note that we
Theoretically, c. - am at two points around the cut-off have not plotted the attenuation k), but rather the
frequency. Perhaps the most interesting feature is that the changes in k2) caused by this damage. To guard against
group velocity becomes negative around Q,, i.e., as the fortuitous results three different frequencies were used,
wave propagates in the positive x direction, the energy namely, 2.25, 5.00 and 7.50 MHz. We note that attenua-
flows in the negative x direction. In Fig. 10 this corre- tion changes quite significantly and monotonically with
sponds to those points on the curve where the slope is the number of transverse cracks. We also note that in the
negative, range of frequency tested, the attenuation decreases with

In Fig. 12 we have plotted attenuation versus frequency. frequency. This may be attributed to the fact that these
The peak in the curve defines the cut-off frequency. For experiments were conducted at k,a = 1.23, 2.70 and
comparison k2), for the neat epoxy alone is 0.13 which is 4.02, where a is the half crack length, at 2.25, 5.00 and
neagligibly small compared to the peak attenuation. Thus 7.50 MHz, respectively. Figure 14 shows the longitudinal
all of k)X may be attributed to the scattering effects. phase velocity at the same three frequencies. Within the

errors of measurement, ±0.2 percent, the phase velocity
QNDE of Damage in Composite Materials remains constant with damage. This is not at all surprising

in view of the fact that here the wave vector (or the
We now demonstrate the application of our technique particle displacement vector) is parallel to the crack face,

to fiber-reinforced composite materials. Graphite/epoxy i.e., the crack-wave interaction is very weak. Thus we
AS4/3502 cross-ply I0./90./0J, laminates were tested.
These were subjected to monotonic tensile loading. As a
result transverse cracks develop. Edge replication was
made to obtain a record of the transverse cracks. The 3.5
loading was interrupted at several points along the load < La/px
axis, the coupon was subjected to an ultrasonic examina- 5.e/Epox,N "5. 41

tion and the loading was resumed. The second/first
method in the reflection mode, eq (15), was used. In Fig. 2.5
13 we have also shown the portion of the edge replication Ct

.- 1.5
I

Leod/Epoxy
a4s. 41 .

.9 .15 .25 .35 .45 .55

- .55Fig.FREQUJENCY, At
o 5 Fig. 12-Normalized attenuation and frequency
V curve. Note a very high attenuation (large energy

.8 absorption) due to dispersion at the cut-off
frequency, 0.

.75 A,.€

.7 |
.15 .25 .35 .45 .55

FREOIUENCY, 9L .0 * 2. 25 MHz
Fig. 11 (a)- Normalized phase velocity and 0 5.00 NWh
frequency curve for the dispersive lead/epoxy . e 7.50 M14:
specimen ERROR 5X

4.0

2 L.02

.5t S.0 .1 .2 .3 .4 .5 .6 .7 .

-0 STRESS (GN/m)

-' Fig. 13-Attenuation Is
.1s .5 .s .45 .55 Cimato with tmnse cracks In

PNESDWVDA. QrlEp, [On 90.0n, lamfnate at ai tMre
R& 110 ds-1- grup aloty ad frequen 1tatd Ext of damase Is
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conclude that for the present case while the attenuation is IL. Wolfendenf, A., Harouhe M-R.. Bkoin. . V., Chen. Y.T.,

sensitive to the presence of transverse cracks, velocity is Te'h"'ffl P.. Kin,,. VK. DOWal V.. Leman. J W., Phillips, R..
not. We have presented here just one exmple ofth Smt.S. and Wana. R.J., '-Dynai Young's Modulus Measureniens

nik el-Bated Alloys: SixrMethods."1 to appear. j. Test. Eval
application of the new technique to ultrasonic NDE of 12. Kinre. VK. and Ui. P.N.. "Resonant scattering of Elatic Wave
fiber-reinforced composites. A detailed investigation of by a Rand-m Distibutiona of Inclusions.- ins. . Soli Siet., 22 (i).
the problem has been carried out and the interested "' ('*)

reaer s rferedto folo-uppapr.13. Kiamu VX. "Dijm us Wae Prppegenoa in Random Partculate
readr i reerrd t a filo-uppapr."Composates. " Recent Advances an Comaposites in the United States and

Japan, ASTU STP 804. ed. J.R. Vinson and Ui. Taya, 309-325 (1985).
14. Kinni. VXK and Roussea, C.Q., "Acoustical and optical BanchesConclusions of Wave Propagation:- Soane Additional Results,"- Proc. Multiple Scatter

W haedsbed a nwexpermental technique which inof waes in Rano Media and RanOma Rog S rface, Th enWe hve 5~fl NCW penState Univ.. ad. V.K. Vardan and V. V. Vardan, 603-613 (19M).
can be used to measure phase velocity and attenuation of 15. Hashin. Z. and Shtrikman. S., "A variational Approach to the
ultrasonic waves in very thin plates (down to a thickness Theory of Th#e Elastic Scawor of Multihase Materials. "j. Mech. Phys
which is three orders of magnitude smaller than the wave- Sot1ads It, 127-140 (1%63).

lengh).We mphaizetha in he eveopmet o ths 1. Dayal, V.. Eden. AJ. and Kin,., V. K., 'Vltrasonic Nondestructivelengh).We mphsiz tht inthedevlopentof his Testing of Matrix Cracks in Fiber-Reinforced Composites,." to be sub-
technique we have taken a 'black-box' approach, i.e., it mitted to EXPERIMENTAL MEC7HANICS.
would work for any material so long as it behaves in a
linear-viscoelastic material and the attenuation is not large. Appendix
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f( t) may be viewed as an infinite sum of such 'wavelets'
at x = 0. Furthermore, at some arbitrary x the 'wavelets'
may be summed up to yield

is5 g(t) OD : (~dw e -) edua

7.50 MzIf G*(oi) is the Fourier transform of g(t), then

- ~~G*(w) = *w 'h

I 2.9 or

G() = e -al
n 2.7 *W
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ABSTRACT

We consider the propagation of Leaky Lamb waves in a plate consisting of

a general balanced symmetric composite material. The problem has been

examined both analytically as well as experimentally. An exact solution for

the dispersion equation was obtained. Numerical results for complex-valued

wavenumber were obtained for an isotropic material (luminum) and a [0/903 1s

Graphite/Epoxy laminate. Excellent agreement for the isotropic case and a

satisfactory agreement for the anisotropic case between the theory and

experiment was observed.



INTRODUCTION 2

Lamb waves are waves propagating in the plane of a plate with traction

free boundaries. In the case of plane Lamb waves the particle displacement

is in two directions:(1) the wave propagation direction, and (2) the

thickness direction. The third component is zero because the plate is

considered infinite in the plane of the plate. The governing equations for

the Lamb waves were first derived by Prof. Horace Lamb in 1917 in his famous

work. These equations were quite complicated and a solution could be

obtained only in the short and long wavelength limits. The first

23comprehensive solution was obtained by Mindlin in 1950. Later, Viktorov in

his book dealt with the solution of Lamb waves in great detail. He provided

the dispersion curves for a material with a Poisson's ratio of 0.34.

According to Krautkramer et al4 and Viktorov3 the dispersion equations for

Lamb waves in a plate immersed in a fluid were derived by Schoch . Merkulov6

has shown that if the density of the plate is large compared to that of the

immersion fluid then the inertia effect of the fluid is negligible. He

obtained a first order approximation solution for the complex part of the

wavenumber i.e. attenuation. Plona et al7 have shown that when the plate

density is comparable to the fluid density, as in the case of plexiglas in

water for example, then the inertial effects are significant and cannot be

neglected.

Most of the work on Lamb waves has been motivated by the ultrasonic flaw

detection of sheet material. Various researchers have studied the Lamb

waves and used them for nondestructive evaluation (NDE) of homogeneous

plates., 12 This is by no means an exhaustive list of the work In this

field. With the advent of composites as a major structural material,

especially in the aerospace industry, the attention of the NDE community has



3

shifted towards the composites and many of the NDE tools available for the

testing of Isotropic materials have been applied to the composites. Quite

naturally, ultrasonics has also been used for the NDE of composites with

varying degrees of success. The major difficulty in case of the composites

arises from the fact that the theoretical analysis of wave propagation is

considerably more difficult. For example, in an isotropic material the wave

propagation and energy propagation directions are the same, in an

anisotropic material the two are, in general quite different.

The general elastic wave problem in a layered composite is very complex

and an exact solution is neither possible nor needed. Various simplified

theories have been proposed which tend to make the calculation of dispersion

relations manageable. The simplest ones to be proposed were the effective

modulus theories.3'15  Here, the geometrically weighted average of the

constituent properties are used as the average material constants. Habegar

et al, have replaced the composite plate with an equivalent homogeneous

anisotropic plate and derived the Lamb wave displacement relations using the

effective stiffness matrix. They have utilized these equations for the

measurement of the nine elastic constants of paper.

Some models1 7 - 1
9 have been proposed to account for the dynamic effects

of the propagating wave in the plates. These models incorporate the

influence of the microstructure and anisotropy. One such 'effective

stiffness" theory was proposed by Sun et al. 7 The fiber and matrix

displacements are expressed as linear expansion about the mid-planes of the

layers. The continuity relations take into account the dynamic interaction

of the layers. Bedford et al18 have proposed a diffusing continuum theory

where the constituents are modeled as superimposed continua which undergo

individual deformations. These deformations are then coupled together In a
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dynamical process. The theory proposed by Chementi and Neyfeh calculates

the effective homogeneous transverse isotropic elastic behavior of a

unidirectional composite in the long wavelength limit, using a two-step

procedure based on alternating layered media. These results were then

applied to a fluid-loaded anisotropic plate which is assumed to approximate

the unidirectional fibrous composite laminate. The first limitations in all

these theories is that they only consider Ideal unidirectional composites

with waves travelling in the fiber direction. Practical laminates, however,

are cross-ply and angle-ply laminates and the effect of waves in these

laminates becomes extremely complicated. The second limitation is that these

theories have not considered the effect of fluid immersion and hence

attenuation due to the leakage into the surrounding medium has been

neglected.
is

As noted earlier, Habegar calculated the dispersive equations for a

balanced symmetrical laminate in vaccum (i.e. traction free boundary

conditions). The object of the present work is to extend his analysis to the

case of a laminate immersed in a liquid. The equations have been written in

a form so that they can be used in conjunction with the effective stiffness

matrix generated by any theory. The composite plate is replaced by an

equivalent homogeneous anisotropic plate. Closed form dispersion equations

are derived for both the symmetric and antisymmotric modes of Lamb wave

propagation; an exact numerical solution is given. Due to particle

displacement normal to the plate, waves are also set up in the surrounding

fluid. This is the mechanism ly which energy "leaks" from the plate into the

liquid; hence the term "Leaky Lamb Waves". At the risk of stating the

obvious, the wavenumber Is complex; the imaginary part is the attenuation

and Is a measure of the energy leaked into the liquid. Stiffness matrix
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calculated from the "effective modulus" theory has been used for the results

presented here. Theoretical results obtained from the dispersion equation

have been experimentally verified by tests performed on steel and aluminum

plates. Excellent comparison between the theory and experiments was

obtained. Finally, the theoretical solutio for a composite laminate has

been verified by tests performed on a [0/90 ]s Graphite/Epoxy composite

plate.

I. THEORY

The development of the dispersion equations has traditionally been

approached in two different ways. First, as developed by Lamb, the particle

displacement U is written in terms of a scalar and a vector potential. A

plane harmonic wave propagating in the plane of the plate is assumed, which

allows the potential to be written so that the separation of variables

technique can be used. The solution of potential equations is then used to

satisfy the boundary conditions and the dispersion equation, linking

wavespeed and frequency, is obtained. The second approach, namely, the

method of partial waves, is more recent and is followed by Achenbach °

Harmonic waves can travel in a plate by reflecting back and forth between

the two plane surfaces. These waves combine in such a manner that in the

steady state a wave which consists of a travelling wave in the plane of

plate and a standing wave in the thickness direction is obtained. This

approach is more fundamental in that it directly provides the wave solution

and results in a clearer picture of the nature of the wave propagation. In

the following the second approach has been used. Since all the tests are

performed under water, wave propagation in a plate immersed in a fluid is

considered and suitable boundary conditions are applied.

A liquid-borne longitudinal wave incident on an unbounded plate Is shown
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in Fig. 1. Shown also are the mode-converted longitudinal and shear waves in

the plate. The waves in the liquid along with the waves in the plate must

sustain themselves to form a steady-state wave pattern in the plate. The

conditions of the continuity of the displacements and equilibrium of forces

at the plate-fluid interface have to be satisfied. The coordinate directions

used here are the standard ones used In the composites literature:

directions 1 and 2 in the plane of the plate while 3 normal to it.

For any symmetrical composite laminate the stress strain relation can

be written as

0~C C C 0 0 C
11 11 12 13 16 11

0* C C C 0 0 C £
22 21 22 23 26 22

0"33 C3 C3 C3 0 0 C3
33 = 31 32 33 36 33 (1)

0 0 0 0 2C C 0 c
23 44 4S 23

01 0 0 0 C 2C 0 C
31 54 55 31
12 C C C 0 0 2C c
L2J61 62 63 661 121

The strain displacement relation can be written as

= (U i +U )/2 for ij=1,2,3 (2)

The equation of motion in an elastic medium is

3

a 01 =PO i=1,2,3. (3)
J=1 l

A plane wave travelling in an arbitrary direction, x ,may be written as

0 = U0 exp[i(k.x-wt)] (4)

00
where U is the displacement vector, U 0its amplitude and k is the

wavenumber vector.

We now assume a plane strain condition considering an infinite plate.

The displacement U and all derivatives with respect to y vanish.2

Substituting Eqs.(1),(2) In Eq.(3),

p0(=C U +C U 1+C (U1  +U ), ()111 1,11 13 3,31 55 1,33 3,13(5
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pO =C U +C U +C 5(U 13+U 11). (6)3 33 3,33 13 1,13 5 .331

For a plane wave with displacements in the x and z directions only, the

displacement components, U and U3, can be written from Eq.(4), as

U1 =U 10exp[i(k x+k z-wt)], (7)

and U 3=U3 exp[i(k xX+kz z-t)]. (8)

where U and U are the wave amplitudes10 30

Substituting Eqs.(S),(6) in Eqs.(7),(8)

PU W2=C U k 2 (C +C )U kxk +C U k2  (9)
1 1 1 0llx 55 13 30Oxz SS 10z

and pU w2=C U k2+(C +C )U k k +C U k2. (10)
30 SS 30 x 55 13 10 x z 33 30 z

Let us define R as

R=U3 0 /Uo=(p 
2-C k 2-C k )/(C +C3)kk (11)

3010 11x 55 z 55 13xz

Eliminating U and U from Eqs.(9),(10) we get a quadratic equation10 30

for k in terms of k and the elastic constants as
2 X

k2=k2 {-B±(B 4D)1/2 }/2 (12)
z x

where,

B=[CC /p)(C . /p-w2/k )-(C /P)(2C +C )/p-C W2 /pk l/{(C C )/p 2 }
33 11 x 13 55 13 S5 x 33 55

and,

D=(w2 /k 2-C /p)(w /k 2-C /P)/{(C C )/p)2
x 55 x 11 33 55

Let us define k and k as the two values of k obtained from Eq.(12)zp zm z

with + or - signs. Also R and R be the value of R when k and k ,p mn zp zm

respectively, are substituted in Eq.(11). The equations derived above are

for bulk waves travelling in an unbounded medium. These bulk waves

travelling in the plate add up, such that, subject to the proper boundary

conditions, the plate wave solution is obtained. The two possible plate wave

displacements have the following forms

Ul=exp{i(k x-wt)}[Mexp(ik z)+Nexp(-ik z)+Pexp(ik z)
x zp zp (

+Qexp(-lk z)] (13)
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3=expi(k x-t)}[R {Mexp(ik z)-Nexp(-Ik z)}+

+R {Pexp(ik z)-Qexp(-ik z)}j (14)

where MN,P.Q are arbitrar , constants.

The boundary conditions to be satisfied for a plate of thickness 2d are

3 =C U +C U =-p at z=±d, (15)33 33 3,3 13 1,1

and,

a. =C U +C U =0 at z=±d. (16)31 55 1,3 55 3,1

That is, the normal stresses in the plate and the liquid are equal and

the shear stresses on the plate surface are zero as the fluid does not

sustain shear. In addition, the continuity of diplacement demands,

U = W at z=±d (17)3 L

where WL is the displacement in the liquid.

Substituting Eqs.(13),(14) in Eqs.(15),(16), the following set of

equations is obtained,

M G X + N G /X + P G Y + Q G /Y = ip(z=d) (18.1)p p m m

M G /X + N G X + P G /Y + Q G Y = ip(z=-d) (18.2)p p m In

M H X -N H /X + P H Y -Q H /y = 0. (18.3)p p In m

MH/X-NHX +PH/Y-QHY =0. (18.4)p p In In

where G =C k +C k ; H =k +k R ;p,m 33 zp,m 13 x p,m zp,m x p,m

and X=exp(ik d); Y=exp(ik d).zp zm

The wave motion in the fluid satisfies the equation

c 120L a2OL 2 0. (19)

a2 Oz2 L L

where k L=W/cL is the wavenumber and cL is the wavespeed in the fluid.

The form of the potential 0 in the fluid to satisfy Eq.(19) is

OL = 0 expfi(k x+k z-wt)]. (20)
Lt 0 x z

Substituting Eq.(19) in Eq.(18) it can be readily shown that



k 2 = k 2 -k 2 .
z L x

The potential #L corresponds to a wave in the fluid which propagates

along the plate in the x-direction and decays exponentially along the

z-direction. This wave in the fluid has to be compatible with the Lamb wave

in the plate. It means that this wave must pursue a path along the x-axis

with a velocity equal to the phase velocity of the Lamb waves. The

displacement in the fluid, WL , can be calculated from the potential by

W = = ik0exp[ i(kx+kz-wt)]"  (21)
L 8z zO 0 x z

Applying the boundary conditions Eq.(17) to Eqs. (14),(21) and (18.2)

we get

mM+nN+rP+sQ=ik.Ooexp(ikzd) (22)

-nM-mN-sP-rQ=-ik o exp(-ik d) (23)
zO 0

where m,n = ±R exp(±ik d) and r,s = ±R exp(±ik d).
p zp m zm

From Eqs (18.3) and (18.4) we can write

aM-bN+cP-eQ=O. (24)

bM-aN+eP-cQ=O. (25)

where a,b = H exp(±ik d) and c,e = H exp(±ik d).
p zp m zm

From Eqs.(24) and (25) we get

N=[(ae-bc)P+(be-ac)Q]/(a 2+b 2)=N1.P+N2.Q (26)

and,

M=[(be-ac)P+(ae-bc)Q]/(a 2+b 2)=N2.P+N1.Q (27)

where Nl=(ae-bc)/(a 2+b ) and N2=(be-ac)/(a2-b 2).

Substituting the values of M and N into Eqs.(22) and (23) we can write

(g+l)(+Q)=ikz 0[exp(ikzd)+exp(-ik d)] (28)

where g=mN2+nNl+r and l=mNl+nN2+s.

Similarly substituting the values of M and N into Eqs.(18.1) and (18.2),
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P+Q=i{p(z=d)+p(z=-d))/(Fi+F2) (29)

where Fi=N2.G .X+Nl.G /X+G .Y; F2=Ni.G .X+N2.G /X+G /Y.

p p a p p m

Comparing Eq.(28) with Eq.(29)

p(z=d)+p(=-d) kz 0 [exp(ikzd)+exp(-ikzd)] (30)

FI+F2 (g+l)

The pressure in the fluid can be calculated from the potential

from the relation

2 2

Lx = z2  (31)

which gives

pCz=d) + p(z=-d) = -A (k k )0 [exp(ik d)-exp(-ik d)) (32)
L x z 0 z z

Substituting Eq. (32) in Eq. (30)
kk 2]1/2 pLW2

g+l Fl+F2

Simplification of Fl+F2 and g+h, substitution into Eq. (33) and rearran-

ging the equations give, for the symmetric mode,

tan(k d) G .H ipL w2tan(kzmd) _H
zp p m + . ... - R + R = 0. (34)

tan(k d) G .H p(GI/p)[k2 -k 2 ] / 2L H m
zm m p p x L P

Similarly, we can show that for the antisymmetric mode the governing

equation is

tan(k d) G .H iP w 2cot(k d) H
zm _ pLm zp R - R 0. (35)

tan(k d) G .H p(G /p)k2-k 21/2z H p mzp a p p

It is quite laborious, but not difficult, to show that for an isotropic

material Eqs.(34) and (35) reduce to the equations (11.43) and (11.44)

obtained by Viktorov.

The first two terms of Eqs.(34) and (35) represent the dispersion

relations for composite plate in vacuum. The third or the complex part of

the equations is due to the immersion of plate In a liquid. It is observed
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that almost all factors in the equations are complex and the required root,

k , Is also complex. These complex transcendental equations were solved by ax

numerical algorithm which is described next.

II. SOLUTION METHODOLOGY FOR DISPERSION EQUATIONS

The solutions of the dispersion equations for composite plates immersed

in a fluid are obtained by the following two step procedure:

1. The correct value of k, of course is complex. However, as a point of

departure, k is taken to be real and the dispersion equation for a plate in

air is used. In other words, the Imaginary part of Eqs. (34) and (35) is

ignored. The roots for the remaining equation are obtained by a linear

search method. The search is conducted in small steps varying either the

wavespeed or the frequency while keeping the other fixed. Both modes of

search are useful depending on the gradients of the dispersion curves in a

particular region. The roots are then calculated precisely by the bisection

22technique.

2. In the second step a search is made for the complex roots of k, i.e.

for

k = k +ik (36)1 2

Substituting in the complete dispersion equation (34) or (35) for an

immersed plate, we can write these equations in the form

Re(k1 ,k 2 + i Imk I k2 1 = 0, (37)

where Re and Im are the real and imaginary parts of the dispersion

equation. Now for a solution to exist both the real and imaginary parts must

be simultaneously zero, i.e.

Re(k 1Ik 2 ] = 0. (38)

and

Imtk1 ,k I = 0. (39,



12

Thus we have two transcendental equations with two unknowns k and k .
1 2

The modified Newton's (Secant) method is used to arrive at the roots of

these equations. The initial estimate of the roots is: k as obtained from

step one (k1 for the Lamb wave in the plate in air) and k 2=0. Now, kI is

incremented in steps of 0.1 and k in steps of 0.01. Since the Newton's2

method converges quadratically, the roots are obtained fairly rapidly. The

nature of these equations is quite complicated and at places roots are close

together. It is difficult to study the uniqueness and convergence of all the

roots for such a complicated equation. Hence, it is quite possible that

depending on the gradient of the equations and roots being close to each

another, the solution may converge to some nearby root. To guard against

this occurrence, we drew the complete dispersion curve diagram. It was found

that in general the convergence was unique and rapid. Only at a few points

the solution did not converge and some times it would converge at a nearby

root. These points could be easily identified from the dispersion diagrams

by using the following criterion: since the dispersion curves in air are

smooth, it is reasonable to expect that the dispersion curves for the plate

immersed in the fluid will also be smooth.

In the foregoing the effective elastic moduli of the plate were

calculated using the classical laminate theory. Heuristically, when the

wavelength is very large compared to the plate thickness, one would expect

our calculations to be a fairly accurate representation of the reality. On

the other extreme, when the wavelength is short compared to the plate

thickness and, more importantly, where it is comparable to the plate

thickness, clearly the theory is expected to break down for now the wave

begins to "see" the individual plies. A question of practical significance

is: Where does the transition occur? A systematic examination of the Issue Is
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beyond the scope of the work. However, in the following we have probed this

issue to a limited extent. This was the motivation for carrying out the

experiments described next. It will be shown that the elementary "rule of

mixtures" theory gives surprisingly good results upto k d = 3.5, where k ist t

the shear wave number.

III. EXPERIMENTAL PROCEDURE

Shown in Flg.2 is a block diagram of the experimental setup. The pulse

generator produces a trigger signal which is used to trigger the signal

generator and also set the initial time (t=O) for the digitizing

oscilloscope. The signal generator is used to produce a tone burst which is

about 10-20 cycles long. This wave train is amplified to about 200 volts and

fed into the transmitting transducer which launches a longitudinal wave in

water. This wave is mode converted into a leaky Lamb wave in the specimen.

These Leaky Lamb waves are sensed by the receiver which can be placed on

either side of the specimen, see Fig. 3. Only the transmission mode (Fig.

3a) was used in this work. The signal from the receiver is amplified to

about 1 volt and fed into a digital oscilloscope. All measurements are made

with a reference peak near the center of the signal where it appears to have

a steady-state. Note that a single cycle of signal will not be able to

establish a good Lamb wave. When one cycle of sine wave is input into the

transducer, due to the damping characteristics of the transducer, certain

transient frequencies are produced. Since these frequencies do not correspond

to the frequencies required to sustain Lamb waves in the plate, good Lamb

waves will not be produced. Hence a long wave train is used which establishes

the frequency of the signal and the effect of the transients can be ignored.

The transmitter and the receiver move on precision travelling mechanisms

graduated to 0.001 In. The specimen is mounted on a turn table graduated to
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0. 1 degrees. When the specimen is rotated, the transducers are moved

accordingly so that the same length of the specimen is always interrogated.

The specimen is rotated in small steps and the peak amplitude and location a

reference peak of the wave train is recorded.

The specimen is fixed at the angle identified as the Lamb angle for the

measurement of attenuation. The receiver is moved by 0.5 inch (12.7mm) in

steps of 0.05 (1.27mm) inch and the received signal is recorded. A

exponential curve is fitted through this amplitude decay and the attenuation

coefficient is estimated by the least-squares fit. The composite specimens

tested during this work were fabricated using Magnamite AS4/3502

graphite/epoxy prepreg tapes manufactured by Hercules Inc.

IV. RESULTS AND DISCUSSION

The accuracy of our theory was checked in two ways:(1) against previous

theories, and (2) against our own experiments.

The dispersion equations for a steel plate in water were solved with

=c ; c 12=c 13 c23 and c 11=(E/p)2 and complex wavenumber was calcula-C11=C2 33' 121312

ted. Figure 4(a) shows the dispersion curves for the steel plate. The solid

lines are for the symmetric mode (soSIS 2 .... ) and the dashed lines are for

the asymmetric mode (a ,a ,a2 ... ). Merkulov
6 did a corresponding analysis for

an isotropic material but his solution was a first order approximation. Even

then he was able to get good results because his assumption of p L/P < 1 is

valid for steel plate in water where pL/p = 0.128. Figure 4(b) shows the

attenuation for the first two modes. The approximate solution obtained by

Merkulov is also shown and is fairly close to our exact solution. In

conclusion, the approxi-mate analysis of Merkulov6 serves to check our exact

solution.

Next, the solution of the dispersive equations for an aluminum plate
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are presented in Fig.5. (We note in passing that for aluminum pL/p = 0.37

which is not negligible in comparison to one and, therefore, Viktorov's

calculation may be quite inaccurate). The dispersion curves are exactly as

obtained by Viktorov 3 but attenuation curves cannot be compared as no

earlier work is available. Next, we describe the experimental results

obtained with an aluminum plate. For a fixed frequency, k td, we measure the

received amplitude as a function of the angle of incidence. The results are

presented for three different values of k d in Fig. 6. The peaks in thet

received signal correspond to the correct angle of incidence or "Lamb angle"

which is governed by the Snell's Law;

Sin(@ )/Sin(e ) = c/c (40)
! r w L

where 6 is the angle of incidence, 6 is the angle of refraction

(=m/2 for Lamb waves), c is the wavespeed in water and c is the Lambw L

wavespeed. Thus,

c L= c /sin(a ) (41)

It is noted that in Fig.6(a) at k d=1.0, two peaks are obtained.t

Converted to wavespeeds with Eq.(41) the values are shown as circled dots on

the dispersion curves in Fig.5(a). The same comment applies to peaks in

Fig.6(b)and 6(c). The attenuation was measured as described earlier. Measured

values of the attenuation coefficient for an aluminum plate are shown as

circles in Fig. 5(b). For the a and a modes the agreement between theory and0 1

experiments Is excellent. For the s mode the agreement is excellent as far as

the lowest k d (1.0) but becomes poorer as k d increases. The reason for thist t

becomes very clear when Figs.S(b) and 6 are examined together: The attenuation

of the s0 mode increases very rapidly with kt d 2.0 (Fig.5(b)). This results

in a correspondingly small received signal for s mode(Fig. 6) and a poor

signal to noise ratio. Hence, a larger scatter in data is to be expected. The
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Importance of calculating attenuation curves becomes apparent: whenever

possible the tests should be performed at low attenuation values to get

accurate results.

Two questions arise at this stage regarding these measurements: (1) How

do we ensure that the angle at which the measurement is made is the correct

Lamb angle? and (2) Is the maximum amplitude criterion sufficient to guarentee

that the angle is a Lamb angle? These questions are addressed here.

The angle of incidence for the Lamb waves can be checked by a very

simple method. Shown in Fig. 7 is the schematic of the signal travelling

through the specimen. When the receiver is at its initial location the total

travel time is given by

t = 1 /c +1 /c+l /c (42)
I 1 w 2 4 w

As the receiver is moved by a distance x, the travel time becomes

t =1 /c +1 /c +1 /c +1 /c (43)
f 1 w 2 L 3 L S w

The difference in the two arrival times is

At= t -t = 1 /C +(0 -1 )/c = 1 /C -xTan(O)/c
r1' 3 L 4 5 W 3 L w

=x/[c Lcos(8)]-xtan(e)/c W  (44)

When Snell's law, Eq.(40), is substituted in Eq.(44), it is seen that At

= 0. This means that at the correct Lamb angle when receiver is moved by any

arbitrary distance, the total time taken by the wave to travel from the

emitter to receiver remains unchanged and only its amplitude is reduced.

Hence in a single experiment the attenuation is obtained and the correctness

of the Lamb angle is verified. The precision of tae procedure was found to

be 0.1 degrees.

Next, tests were performed on a [0/90 3 graphite/epoxy composite. The

dispersion and attenuation curves for this specimen are shown in Figs. 8(a)

and 8(b), respectively. (The derivation of elastic constants for this laminate
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is deferred to the Appendix). The experimental results are shown as discrete

circles In Fig.8. The comparison between the theory and experiments is

considered reasonable. On the dispersion curves the comparison does not look

very good, but the reason for this discrepancy is as follows. The stiffness

coefficients used to solve the dispersion equations are for an ideal

composite, with coefficients obtained by the rule of mixtures. Since the

laminate used for the tests was fabricated by the author, it is expected that

the properties of the laminate will not be as good as the theory suggests. The

statically measured stiffness of the laminate is lower and the corresponding

wavespeed is shown as an arrow on the figure. In view of the reduced value of

c the entire dispersion curves will be shifted downwards and then an11

excellent agreement between theory and experiment will be observed. This also

means that all the elastic constants to be used in the equations should be

determined experimentally. Then only the solution of the dispersion curves

will be truly representative of the response of the plate. The low attenuation

values shown in Fig. 8(b) could be measured but then the attenuation rises

very rapidly and cannot be measured at higher frequencies due to the reasons

described earlier.

Finally, in this paper we have reported theoretical and experimental

procedures for investigating Leaky Lamb Waves in composite laminates. The

motivation for this work came from the Ultrasonic Nondestructive Evaluation

(UNDE). As a composite laminate is damaged the stiffness decreases and the

attenuation increases. Thus, from a measurement of stiffness and attenuation

one can deduce the extent of damage. Measurement of these quantities in the

through-the-thickness direction is a relatively straight forward matter and

was the subject of a recent investigation by the present authors (Kinra and

Dayal) 3 However, it is of equal, If not greater, interest to measure the
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in-plane stiffness and attenuation. We have measured these quantities as a

function of damage in graphite/epoxy laminates; this will be the subject of

a follow-up paper by the authors.

V. CONCLUSIONS

We have considered the propagation of Leaky Lamb Waves in a balanced

symmetric laminate immersed in a liquid. An exact solution for the

dispersion equation has been derived. The wavespeed and the attenuation were

also measured experimentally for a [0/903 1 laminate. The agreement between

the theory and experiment was found to be quite good.
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APPENDIX

The stiffness of an orthotropic lamina Is fully defined by the following

elastic constants,

El1 E11 2 2  E13 0 0 0
E E E 0 0 0

2211 2222 2233E = E E3 2  E 0 0 0 (Al)
lIJkl 3311 3322 3333

0 0 0 E 0 0
2323

0 0 0 0 E 0
3131o 0 0 0 0 E

1212

For a lamina with a fiber orientation in an arbitrary direction this

stiffness tensor has to be written in the rotated coordinate dircctions. For

a fourth order tensor, the transformation law is

T' = a a a a T (A2)liki p1 qj rk s'l pqrs

where a is the direction cosine between directions i and j.Ii

Let directions 1 and 2 be in the plane of the plate and a rotation, 8,

takes place about axis 3. Substituting the rotation angle in the

transformation law and writing the stiffness in the contracted notation, the

following non-zero terms are obtained,

C' C, C' 0 0 C'
11 12 13 16

C, C, C, 0 0 C'
21 22 23 26

E C' C, C' 0 0 C' (3Jkl 31 32 33 36

0 0 0 C, C' 0
44 4S

0 0 0 C, C, 0
54 5S

C C' C' 0 0 C'
61 62 63 66

Only the above terms will be effective when the stiffness matrix is

21
synthesised. Hence this matrix is used in deriving the governing equations

for the Lamb waves. We observe from the main body of derivations of the

dispersion equations that the terms left after simplifications are C11, C13,

C 33  and C.

Relating the stiffness to modulus properties and the lamina being
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transversely Isotropic, with E 3 E2 and P 13 - P1 2' following relations are

obtained,

11 1 12 21
C 13 P2 2E/(1-V1 2v 2 1)

C3 3  E2 /l- 2 V21) (A4)

C 56 13- 2CSS = 13 = 12

For the AS4/3502 lamina, the following properties were measured,

E = 1.48 Eli N/m2

E = 1.10 EIO N/m2
2

v~l = 0.27

222S= 0.0199

G = 4.83 E9 N/m2.
12

and were used to estimate the laminate properties.

I'
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List of Figures:

Fig. 1. Generation of Lamb waves in a plate. Each reflection produces a

longitudinal (solid line) and a transverse (dash line) wave.

Fig. 2. Block Diagram of the experimental setup.

Fig. 3. Generation and reception of Leaky Lamb waves, (a) transmission, and

(b) Reflection modes.

Fig. 4. (a) Dispersion Curves and (b) attenuation curves for a steel plate

immersed in water.

Fig. 5. (a) Dispersion curves and (b) attenuation curves for an aluminum plate

Immersed in water. Discrete points are experimental.

Fig. 6. Received signal amplitude as a function of angle of incidence, at k d

= 1.0,2.25, 3.5 for aluminum plate in water.

Fig. 7. Travel time for a Lamb wave in a plate.

Fig. 8. (a) Dispersion curves, and (b) attenuation curves for a [0/903]
3

laminate in water. Discrete points are experimental.
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ABSTRACT

This paper is concerned with the use of leaky Lamb waves for the Non-Destruc-

tive Evaluation (NDE) of damage in anisotropic materials such as fiber-reinforced

composites. Two fundamental acoustic properties of the material, namely, the

wavespeed and attenuation have been measured. Stiffness is deduced from the

wavespeed. The damage mode selected for this study is matrix cracking. As ex-

pected, the in-plane stiffness decreases and the attenuation increases with an

increase in the linear crack density.



ply laminates. The reason for this behavior becomes clear from Fig. la. In

the through-the-thickness mode, the wave travels normal to the plate and the

cracks also lie in the same plane. Obviously, the wave-crack interaction is

low. As mentioned earlier, though changes in attenuation are measured, the wave-

speed or stiffness is not effected. Moreover, out-of-plane stiffness is not

of much use to the designer while in-plane stiffness is an important design criteria.

Hence, ultrasonic waves travelling in the plane of the plate can be used to measure

the relevant changes in wavespeed and attenuation. This mode of wave propagation

is called the Lamb wave (or plate wave) mode. In this mode the waves travel

in the plane of the plate or normal to the cracks, see Fig. Ib, and hence the

crack-wave interaction will be large and it is expected that the in-plane stiffness

can be measured.

When the plate is immersed in a fluid, the Lamb waves travelling in the

plate leak energy into the surrounding fluid as shown in Fig. 2. These waves

in the fluid have been named "Leaky Lamb waves". These leaNy Lamb waves can

be sensed by a transducer and the wavespeed and attenuation in the plate material

can be measured. It may be noted here that in the Lamb wave mode of wave propaga-

tion, attenuation in undamaged specimens is due to; (1) energy leaked into the

fluid, and (2) due to the material non-uniformity because of the damage. We

assume that the attenuation due to leakage remains essentially constant but the

attenuation due to damage increases with damage. Hence the measured increase

in attenuation is attributed to the induced damage. The Lamb wavespeed, on the

other hand, is related to the overall stiffness in the plane of the plate and

hence the changes in wavespeed are due to the change in the in-plane stiffness

as the damage increases.

Bar-Cohen and Chementi (4) have utilized the leaky Lamb waves for the non-

destructive testing (NDT) of damage in fiber-reinforced composites. They have
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shown that various forms of damage can be identified by a null-zone movement

method. When a wave is incident upon the plate, the specular reflection from

the plate takes place along with the generation of Lamb waves in the plate.

Due to phase change in the leaky waves, the specular reflection and the leaky

wave interfere and a well defined null zone is observed; this movement of the

null zone has been related to various defects. They have used this in a C-Scan

type setup to map the damage.

In this work we have taken an entirely different approach in utilizing Lamb

waves for the NDE of composites. The receiving transducer is placed in such

a position that the specular reflection is completely avoided and only the leaky

waves are sensed. Shown in Fig. 2 is the relative position of the transmitter

and the receiver. The wavespeed and attenuation in the specimen are measured

from the received signal. The specimen is damaged and transverse cracks are intro-

duced in the cross-ply laminates. We present here some results for the NDE of

cross-ply laminates by leaky Lamb waves. It is observed that attenuation increases

and in-plane stiffness decreases as damage is induced in the composites. The

technique has a good potential for field application since it is non-destructive

and is the only NDE technique available for the in plane stiffness measurement.

Furthermore, as will be shown later, it yields local values of properties.

THEORY

The detailed derivation of the dispersion equations for a general balanced

symmetrical composite laminate immersed in a fluid are reported in a companion

paper (5). The basic symmetrical mode (so) has been selected for the tests.

The reason for this selection will be described in details in the results section.

It will suffice to mention at this stage that in this mode the wave travels as

a plane-fronted wave. Also, the wavelength of the wave is large in comparison

to the crack-size and therefore the composite can be treated as an anisotropic
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homogenous material. In this mode it can be shown (6) that when fd is small,

c2 = EI/P(l-v12v 21) (1)

where f is the test frequency, 2d is the plate thickness, c is the Lamb wavespeed,

El is an in-plane modulus, and v12 and v21 are the two in-plane Poisson's ratios.

For the composites tested during this investigation v12v21<<1 and hence Eq. (1)

reduces to,

c2 = Ei/p (2)

The refraction of ultrasonic waves through a plate follow the Snell's law

of refraction;

Sin(Oi)/Sin(Or) = v(/c (3)

where v. is the wavespeed in water, 0i and or = 7/2 are the angles of incidence

and refraction, respectively. Thus,

c = vw/Sin(O i )  (4)

combining Eq.(4) with Eq.(2),

El = P[vjSin(Oi)] 2  (5)

This equation is used for the measurement of the in-plane stiffness in this

work.

It is obvious from Eq. (5) that the measurement of 'i will be an important

factor in the accuracy of measurement. A very simple but elegant method has

been devised to accurately ascertain the Lamb angle. As shown in Fig. 2 the

receiver is moved by a distance, x. A very elementary calculation (5) shows

that at the correct Lamb angle, total travel time from the emitter to the receiver

is independent of x. Thus, though the receiver is moved on its travelling mecha-

nism, the signal on the oscilloscope remains unchanged on the time scale: only

its amplitude is reduced. It was determined that the Lamb angle could be measured

with a precision of 0.1 degrees. The decrease in the amplitude of the signal

as the receiver is moved, is recorded and by fitting an exponential curve through
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the points, the attenuation coefficient is calculated. Thus, in one experiment

the attenuation is obtained and the validity of the Lamb angle is also checked.

The accuracy of measurement of modulus is estimated to be 2%, and for attenuation

it is about 10%.

EXPERIMENTAL PROCEDURE

The block diagram of the experimental setup is shown in Fig. 3. The pulse

generator produces a trigger signal which is used to trigger the signa. generator

and also set the initial time for the digitizing oscilloscope. The pulse generator

produces a train of sinusoidal signal. Since these signals are typically of a

few volts in amplitude, a power amplifier is used to amplify the signal to about

200 Volts. This amplified signal is then fed into the transmitting transducer.

The transducer produces an ultrasonic wave which is transmitted through the water

and specimen to the receiving transducer. The receiver sends the signal to the

signal amplifier, which provides the oscilloscope with a signal of about one

volt. The digitizing oscilloscope averages the signal over 64 samples and stores

the average. On demand from the computer, the necessary information is provided

by the oscilloscope over an IEEE-488 bus. The wavespeed and attenuation are

then calculated. Entire operation of the oscilloscope is controlled by the com-

puter.

Water is used as an acoustic couplant; the transducers are mounted inside

a water bath. Transmitter and receiver are mounted on two travelling mechanisms

graduated to 0.001 inch and the specimen is placed in a holder mounted on a turn-

table which is graduated to 0.1 degrees. When the specimen is rotated to achieve

the correct Lamb angle, the length of the specimen between the transducer is

increased. To offset this increase, the two transducers are moved laterally

such that same length of the specimen is interrogated throughout the experiments.

Since repeatability is very important in our measurements, the specimen holder
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is designed so that exact replacement of the specimen is achieved every time.

The specimen is carefully placed against a tab fixed on the specimen holder on

each replacement. A typical plot of received signal as the specimen is rotated

is given in Fig. 4.

All composite specimens are made of Magnamite AS4/3502 graphite/epoxy prepreg

tapes manufactured by Hercules Inc. Transverse cracks were chosen to be the

mode of damage for all the studies reported here. Towards this end cross-ply

laminates with layups of the type [Om/90 n]s were fabricated. Typically the speci-

men are plates of 1"X11" size.

All loading to induce damage in the specimen was performed on INSTRON Model

125 equipped with a 20,000 lb load cell. The tests were conducted in the stroke-

control mode. The cross-head speed used was 0.05 in/min in the initial stages

of damage. When nearing the ultimate strength of the specimen the speed was

reduced to 0.02 in/min.

The edges of the specimens were polished with 5 and 1 micron alumina powder.

This is done to get good quality edge replications. A record of the cracks devel-

oped in the specimen was maintained in the form of edge replications. In order

to open the cracks, the specimens are loaded in the INSTRON machine to about

500 lbs. The replicating tape is softened by acetone and pressed against the

edge of the specimen. The tape material flows into the crack and hardens in

about 30 seconds. The tape is removed and the replica of the cracks can be viewed

under a microfiche reader.

In the early stages of this work, water seepage into the cracks was found

to be a major source of error and this was prevented by coating the edges with

a strippable coat (Mfg. Sharwin Williams).

RESULTS AND DISCUSSIONS

Dispersion equations for Lamb waves in isotropic materials are available
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in the published literature, they were solved (8) based on the assumption that

the attenuation due to leakage is negligibly small. This assumption is reasonably

valid as long as pl/p>>l wherep and p are the densities of the plate and the

immersion fluid, respectively. If one is studying steel/water system then o1/c

is, in fact, large compared to one. However, for the fiber-reinforced composites

studied in this work, pI/p = 1.53 and therefore, neglecting the inertial loading

of water will result in gross error in the dispersion curves as also shown by

Plona et al (9). Therefore, we have derived an exact solution for the dispersion

equations for an anisotropic plate immersed in a fluid and have obtained the

dispersion curves as well as the attenuation curves. These have been reported

in an earlier paper (5). Some results from the work are shown in Fig. 7 for

the sake of continuity.

Before embarking on the NDE of composites, we performed some numerical calcula-

tions to study the sensitivity of various wave speeds and frequencies on different

components of the stiffness matrix. The four elastic constants c1l, c33 , c55,

and c13 are the contributors to the dispersion equations. In this study one

stiffness coefficient is decreased at a time and the Lamb wavespeed calculated.

The studies are made on a [0/904] s laminate. The effects of the degradation

in stiffness constants on the basic symmetric and asymmetric modes, so and ao

respectively, are studied. The results for the symmetric mode at a fd = 0.25

MHz-mm (kd = 0.32) are shown in Fig. 5a. Quite expectedly, only Cll contributes

significantly to the reduction in the wavespeed. The effect of c33 and c13 is

very small and the effect of c55 is practically zero. An interesting result

is that if the degradation takes place in c13 then the .,.vespeed increases; the

effect is however very small. Shown in Fig. 5b is the effect of stiffness degrada-

tion on the ao mode at fd = 0.5 MHz-mm (kd = 0.63). Now ao is the fundamental

flexural mode and is well known that shear deformation plays a significant role

in the propagation of flexural waves. Accordingly, it is observed that the major
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contributor in this case is c55 but contributions due to C11 and c33 are not

negligible. A decrease in c33 results in an increase in Lamb wavespeed. However,

C13 does not contribute to the change in wavespeed.

The results for the next higher modes, sI and aI are shown in Fig. 6. The

effect of sI mode is studied at fd = 2.00 MHz-mm (kd = 2.53). For this mode

the major contribution comes from the c33 and cll. On the other hand degradation

in c55 and c13 will tend to increase the wavespeed and their contributions are

not negligible. The results for al mode are at fd = 0.6 MHz-mm (kd = 0.76).

Here cll and c55 effects are of the same order and c33 and c13 effects are neg-

ligible.

The conclusions of this study are that the Lamb wave technique is useful

in measuring the degradation in cll, which can be made with tests in so mode.

To some extent, by using the ao mode the degradation in c55 can be studied.

Since contributions from other modes will also affect the Lamb wave speed, the

measurements will not be reliable for the case of ao mode. But a combination

of tests may prove to be useful. For example, the degradation in c33 and cil

can be measured by tests in sI mode. If the ratio of these degradations is esti-

mated, then the effect of c33 can be separated. Similarly, the effect of c55

can be measured by combining al and so modes. Based on this sensitivity study

it was decided to carry out all measurements in the so mode.

First, the tests were performed on a [0/903] s graphite/epoxy composite lami-

nate. The dispersion curves for this specimen are shown in Fig. 7a. The solid

lines are for symmetric mode and dashed lines for asymmetric modes. The attenuation

curves for various modes are shown in Fig. 7b. The tests for Lamb wavespeed

and attenuation in undamaged specimens, as described earlier, are performed and

the results are shown as discrete points on Fig.7. The theoretical curves are

from stiffness values calculated by the rule of mixtures (7); the agreement between
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theory and experiments is considered satisfactory. The static stiffness of the

laminate was also measured in a tensile testing machine and the corresponding

wavespeed is shown as an arrow in Fig. 7a. This shows that if the experimentally

determined values of the stiffness constant are used in the dispersion relations

then a better correlation between the theory and experiments will be observed.

Now the same [0/9033 s laminate is tested to study the effect of transverse

cracks on the Lamb wave speed and attenuation. The tests are conducted at a

frequency of 0.5 MHz with fd = 0.275 MHz-mm (kd = 0.34). The reduction in the

normalized stiffness as a function of number of cracks per centimeter as damage

progresses is shown in Fig. 8. The normalized stiffness is defined as E/E0 where

E0 is the stiffness of the undamaged laminate and E is the stiffness of the damaged

laminate. The figure also shows a dashed horizontal line which denotes the stiff-

ness of the damaged laminate calculated by the ply-discount theory. In this theory

the stiffness of the cracked lamina is assumed to be zero in the direction normal

to the crack and the laminate stiffness is synthesized. The experimental results

obtained by the Lamb wave technique are within the lower limit set by the theo-

retically obtained limit.

Next, a [0/904] s laminate is tested when damage is induced in it. The test

is performed at 0.5 MHz with fd=0.355 MHz-mm (kd = 0.44). The reduction in stiff-

ness for this laminate is shown in Fig. 9. Also shown in the figure is the damage

state and the position of the transmitter (TR) and receiver (R) relative to the

specimen. It is observed that in going from damage state 3 to state 4, though

there was a substantial increase in the total number of cracks in the specimen,

the number of cracks in the region interrogated by the transducer did not increase.

As a consequence, no change in the stiffness of the specimen was recorded. This

is very reassuring for it demonstrates that our measurement refiects local changes

in the stiffness. For this specimen, stiffness reduced by about 30 % as compared
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to the virgin state. The dashed line shows the stiffness reduction as calculated

from the ply-discount theory but for this specimen the measured stiffness was

slightly lower than the theoretically calculated value. In comparison to the

reduction for the [o/903]s laminate it is observed that the stiffness reduction

for this laminate is larger. The reason for this is that the net contribution

of the eight-90 plies to the overall stiffness is more than the contribution

of six-90 plies and hence failure of plies in the [o/904] s laminates results

in a higher reduction in relative stiffness. Observe that the [0/903] s laminate

has a crack length of 6-ply thickness long while the [0/904] s laminate has a

larger crack length of 8-ply thickness long.

The next set of tests were performed on a [02/902/0]s laminate. For this

laminate the crack size is very small; 2 ply-thickness long. The reduction in

stiffness as transverse cracks are introduced is shown in Fig. 10. Observe a

smaller reduction in stiffness. Even though this laminate has four-90 plies,

they are divided into groups of two, and also, the total number of 0' plies in

this laminate is increased three times. Thus the total contribution of the 90'

plies to the overall stiffness is very low and hence their failure results in

less reduction in stiffness.

The attenuation increase in the three laminates tested are combined together

and shown in Fig. 11. Shown also in the figure are the kla for the three lami-

nates. The purpose behind this presentation is to demonstrate the effect of

the normalized scattering cross-section of the cracks, kla, on the attenuation.

In this context we cite an excellent work by Tan (10) who has calculated the

normalized scattering cross-section of a Griffith crack subjected to a longitudinal

plane wave loading; see Fig. 12. Since Tan's calculation is for an unbounded

medium, it cannot be applied quantitatively to the present case. However, it

does provide an excellent background in which the present results can be explained
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qualitatively. In 102/902/0]s laminate k1a 
= 0.06. As is well known this is

the so-called Rayleigh scattering regime where the scattering cross-section of

a cracks is very small. The waves pass through the plate without seeing the

cracks and as a result the increase in attenuation is very low. For [0/9031 s

laminate k1a = 0.26 while for the [0/904]s laminate k1a 
= 0.45 and the observed

increase in attenuation is very high. The effect of k1a on measured attenuation

is very interesting. Kinra (11) has worked with composites consisting of Lead

spheres in an epoxy matrix and has shown that the wave propagation in these compo-

sites occurs along two separate branches: (1) the low frequency, slower, acoustical

branch along which the particle motion is essentially in phase with the excitation,

and (2) the high frequency, faster, optical branch along which the particle displace-

ment is essentially out of phase of the excitation. The two are separated by

a cut-off frequency which corresponds to the excitation of the rigid-body-transla-

tion resonance of the heavy inclusion. This occurs when k1a = 0(l), where a

is the inclusion radius. Around the cut-off frequency both the phase velocity

as well as the attenuation change very dramatically. This phenomenon is shown

in Fig. 13 taken from our earlier work(12). It is our conjecture that a similar

phenomenon is taking place in these laminates and the cracks act as inclusions.

These results forewarn against an arbitrary selection of the test frequencies.

Depending on the flaw size, a, the test frequency and hence the k1a has to be

chosen such that a good signal amplitude decay curve is obtained. If the attenua-

tion falls very slowly with damage then it will not be a sensitive measure of

the damage. On the other hand if the attenuaton falls very rapidly then at a

relatively low crack density the received signal will be lost and the measurement

will be inaccurate.

CONCLUSIONS

Propagation of a leaky Lamb wave in its fundamental mode in three cross-ply
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laminates; [02/902/01s, [0/903]s, and; [0/904]s, has been studied experimentally.

The effect of matrix cracking on the speed (i.e. stiffness) and attenuation was

studied in the long wavelength regime. As expected, it was found that the in-plane

stiffness decreases while the attenuation increases with linear crack density.

Therefore, either of these quantities may be used to measure the damage-induced

degradation of the in-plane stiffness. A particular advantage of this method

is that one can measure the local values (average over the transducer diameter)

of stiffness. The attenuation, on the other hand, is averaged over the distance

between the transmitter and receiver.
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malized frequency, P(S2=kla where a is inclusion radius), in Lead Epoxy

Composite at volume fraction Z. (Ref. Kinra and Dayal (12)).
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